DOI QR코드

DOI QR Code

Influence of Coating Materials and Emulsifiers on Nanoparticles in Manufacturing Process

코팅물질과 유화제가 나노입자 제조 및 안정성에 미치는 영향

  • Kim, Byeong-Cheol (Dason Biotechnology Research Institute) ;
  • Chun, Ji-Yeon (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Park, Young-Mi (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hong, Geun-Pyo (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Si-Kyong (Department of Molecular Biotechnology, Konkuk University) ;
  • Choi, Mi-Jung (Department of Molecular Biotechnology, Konkuk University)
  • 김병철 ((주)다손 생명공학연구소) ;
  • 천지연 (건국대학교 축산식품생물공학과) ;
  • 박영미 (건국대학교 축산식품생물공학과) ;
  • 홍근표 (건국대학교 축산식품생물공학과) ;
  • 이시경 (건국대학교 분자생물공학과) ;
  • 최미정 (건국대학교 분자생물공학과)
  • Received : 2012.03.03
  • Accepted : 2012.04.03
  • Published : 2012.04.30

Abstract

The objective of this study was to investigate the influence of emulsion processing with various homogenization treatments on the physical properties of nanoparticles. For the manufacturing of nanoparticles, by taking the emulsion-diffusion method, various coating materials, such as gum arabic, hydroxyethyl starch, polycarprolactone, paraffin wax, ${\kappa}$-carrageenan and emulsifiers like Tween$^{(R)}$60, Tween$^{(R)}$80, monoglyceride and Pluronic$^{(R)}$F68, were added into the emulsion system. Furthermore, the various speeds (7,000 rpm to 10,000 rpm), and times (15 s to 60 s) of homogenization were treated during the emulsion- diffusion process. NEO II homomixer was the most effective homogenizer for making nanoparticles as 51 nm ($D_{10}$) and 26 nm ($D_{50}$). To manufacture smaller nanoparticles, by using NEO II homomixer, 10,000 rpm of agitation speed, polycaprolactone as coating material, and Pluronic$^{(R)}$F68 as an emulsifier were the optimum operating conditions and components. For the stability of nanoparticles for 7 days, $20^{\circ}C$ of storage temperature was appropriate to maintain the particle size. From these results, the type of homogenizer, homogenization speed, homogenization time and storage temperature could affect the particle size. Moreover, type of coating materials and emulsifier also influenced the size and stability of the nanoparticles.

본 실험은 emulsion-diffusion 방법을 이용한 코팅물질과 유화제를 혼합하여 균질하여 유화액을 만든 후 증류수를 첨가하여 확산시킴으로써 나노입자를 제조하는 방법을 사용하였다. 유화공정에 따른 변화를 살펴보기 위하여 균질기 종류와 균질 속도, 균질 시간을 달리하여 그에 따른 입자크기의 변화를 살펴보고, 나노유화액이 가장 잘 제조되는 조건에서 여러 종류의 코팅물질과 유화제를 이용하여 나노입자의 크기 변화를 살펴보았다. 또한 저장 온도와 저장 기간에 따른 나노입자 크기를 관찰 하고 그에 따른 활성에너지를 산출하였다. 유화 공정에 따른 나노입자 크기의 변화를 살펴보면 NEO II의 경우가 가장 작고 고른 나노입자을 형성하였다. 또한 균질 속도가 증가할 수록 입자가 작아지는 것을 알 수 있었다. 하지만 균질 시간이 증가될수록 입자크기가 증가되는 경향을 보였다. PF68은 유화 능력이 가장 좋은 유화제로 관찰되었고 코팅물질은 PCL이 가장 우수한 능력을 나타내어 나노입자를 제조하는데 있어서 가장 적당하다고 사료되었다. 저장 기간에 따른 입자크기를 살펴보면 저장 기간이 증가할수록 크기가 증가하며, 저장 온도가 낮을수록 변화의 폭이 더 큰 것을 알 수 있었다. 본 연구를 통해 균질기 종류, 균질시간, 균질 속도, 코팅물질 그리고 유화제등은 유화액을 제조할 때 중요한 공정 조건이며 다양한 나노캡슐화 공정으로 원하는 크기의 나노입자를 제조할 수 있다고 사료된다.

Keywords

References

  1. Adamson, A. W. (1990) Physical chemistry of surfaces, fifth edition. John Wiley & Sons, Chichester, NY, Chapter. 10.
  2. Arriagada, F. J. and Osseo, A. K. (1999) Synthesis of nanosize silica in a nonionic water-in oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration. J. Colloid. Interface. Sci. 211, 210-220. https://doi.org/10.1006/jcis.1998.5985
  3. Bedu-Addo, F. K. and Huang, L. (1995) Interaction of PEGphospholipid conjugates with phospholipid: implications in liposomal drug delivery. Adv. Drug Delivery Rev. 16, 235-247. https://doi.org/10.1016/0169-409X(95)00027-5
  4. Chang, C. L. and Fogler, H. S. (1997) Controlled Formation of Silica Particles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Microemulsions. Langmuir. 13, 3295-3307. https://doi.org/10.1021/la961062z
  5. Deasy, P. B. (1984) Microencapsulation and Related Drug Processes. Marcel Dekker Inc; NY, USA.
  6. Deng, X., Liu, Y., and Yuan, M. (2002) Study on biodegradable polymer; Synthesis and charateriztion of poly (DL-lactic acid)-co-poly(ethylene glycol)-co-poly(L-lysine) copolymer. Eur. Polym. J. 38, 1435-1441. https://doi.org/10.1016/S0014-3057(02)00017-4
  7. Dziezak, J. D. (1988) Microencapsulation and encapsulated ingredients. Food Technol. 42, 136-148.
  8. Fanger, G. O. (1974) Microencapsulation: A Brief History and Introduction. In Vandegaer J.E. (Ed.). Microencapsulation- Processes and Applications. Plenum Press, NY, pp. 1-20.
  9. Giese, J. (1993) Packaging, storage and delivery of ingredients. Food Thechnol. 47, 54-63.
  10. Griffin, W. C. (1951) Solid essential oil concentrate and process of preparing the same. U.S. Patent No. 2556410.
  11. Huppertz, T. (2011) Homogenization of Milk; Other Types of Homogenizer (High-Speed Mixing, Ultrasonics, Microfluidizers, Membrane Emulsification). Encyclopedia of Dairy Sciences, 2nd ed., Academinc Press, Elsevier, Amsterdam.
  12. Jackson, L. S. and Lee, K. (1991) Microencapsulated Iron for Food Fortification. J. Food Sci. 56, 1047-1050. https://doi.org/10.1111/j.1365-2621.1991.tb14638.x
  13. Kester, J. J. and Fennema, O. R. (1986) Edible films and coatings: a review, Food Thechnol. 40, 47-59.
  14. Lee, M. Y., Min S. G., Bourgeois, S., and Choi, M. J. (2008) Development of a novel nanocapsule formulation by emulsion diffusion combined with high hydrostatic pressure. J. Microencapsul. 26, 122-129.
  15. McGinity, J. W. and O'Donnell, P. B., (1997) Preparation of Microspheres by the solvent evaporation technique. Adv. Drug Del. Rev. 28, 25-42. https://doi.org/10.1016/S0169-409X(97)00049-5
  16. Park, G. Y., Mun, S., Park, Y., Rhee, S., and Decker, E. A. (2007) Influence of encapsulation of emulsified lipids with chitosan on their in vivo digestibility. Food Chem. 104, 761-767. https://doi.org/10.1016/j.foodchem.2006.12.020
  17. Perumal, D. (2001) Microencapsulation of ibuprofen and $Eudragit^{(R)}$ RS 100 by the emulsion solvent diffusion technique. Int. J. Phytorem. 218, 1-11.
  18. Rafati, H., Coombes, A. G. A., Adler, J., Holland ,J., and Davis, S. S. (1997) Protein-loaded poly(DL-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics. J. Control. Release 43, 89-102. https://doi.org/10.1016/S0168-3659(96)01475-7
  19. Risch, S. J. and Reineccius, G. A. (1988) Flavor encapsulation, ACS symposium series No 370, American Chemical Society. Washington DC.
  20. Risch, S. J. and Reineocius, G. A. (1995) Encapsulation and controlled release of food ingredients. ACS symposium series No 590, American Chemical Society. Washington DC.
  21. Ramchandani, M. and Robinson, D. (1998) In vitro and in vivo release of ciprofloxin from PLGA 50:50 implants. J. Control. Release 54, 167-175. https://doi.org/10.1016/S0168-3659(97)00113-2
  22. Shahi, F. S. and Han, X. (1993) Encapsulation of food ingredients. CRC Crit. Rev. Food Sci. Nutr. 33, 501-547. https://doi.org/10.1080/10408399309527645
  23. Takada, S., Yamagata, Y., Misaki, M., Taira, K., and Kurokawa, T. (2003) Sustained release of human growth hormon from microcapsules prepared by a solvent evaporation technique. J. Control. Release 88, 229-242. https://doi.org/10.1016/S0168-3659(02)00494-7
  24. Taylor, Y. M., Davidson, P. M., Bruce, B. D., and Weiss, J. (2005) Liposomal nanocapsules in food science and agriculture. CRC Crit. Rev. Food. Sci. Nutr. 45, 587-605. https://doi.org/10.1080/10408390591001135

Cited by

  1. Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice vol.60, pp.1, 2015, https://doi.org/10.1016/j.lwt.2014.09.041
  2. Preparation of Nanoemulsions Containing Curcumin by High Pressure Homogenization vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.341
  3. Production of Evening Primrose Oil in Water (O/W) Emulsion by High Speed or High Pressure Homogenization vol.23, pp.4, 2012, https://doi.org/10.13050/foodengprog.2019.23.4.243
  4. 반응표면분석법을 이용한 현미유 유화 제조공정 최적화 vol.51, pp.6, 2012, https://doi.org/10.9721/kjfst.2019.51.6.531