DOI QR코드

DOI QR Code

MgB2 초전도 특성에 대한 나노 FexC 첨가 효과

Effects of Nano FexC Addition on Superconducting Properties of MgB2

  • 이동건 (한국원자력연구원 중성자과학연구부) ;
  • 이지현 (한국원자력연구원 중성자과학연구부) ;
  • 전병혁 (한국원자력연구원 중성자과학연구부) ;
  • 박순동 (한국원자력연구원 중성자과학연구부) ;
  • 엄영랑 (한국원자력연구원 동위원소이용기술개발부) ;
  • 박해웅 (한국기술교육대학교 신소재공학과) ;
  • 김찬중 (한국원자력연구원 중성자과학연구부)
  • Lee, Dong-Gun (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Lee, Ji-Hyun (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Uhm, Young-Rang (RI Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Hai-Woong (Department of Materials Engineering, Korea University of Technology Education) ;
  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute)
  • 투고 : 2012.02.26
  • 심사 : 2012.03.18
  • 발행 : 2012.04.28

초록

The effects of nano $Fe_xC$ addition to superconducting properties of $in$ $situ$ processed $MgB_2$ superconductors was examined. 0.1 wt.% and 1 wt.% nano $Fe_xC$ powders were mixed with boron and magnesium powders by ball milling. The powder mixtures were made into pellets by uniaxial pressing. The pellets were heat-treated at $700^{\circ}C-900^{\circ}C$ in argon atmosphere for $MgB_2$ formation. It was found by powder X-ray diffraction that the raw powders were completely converted into $MgB_2$ after the heat treatment. The superconducting transition temperature ($T_c$) and critical current density ($J_c$), estimated from susceptibility-temperature and $M-H$ curves, were decreased by nano $Fe_xC$ addition. The $T_c$ and $J_c$ decrease by nano $Fe_xC$ addition are attributed to the incorporation of iron and carbon with $MgB_2$ lattices (Fe substitution for Mg and C substitution for B) due to the high reactivity of the nano $Fe_xC$ powder.

키워드

참고문헌

  1. J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zenitani and J. Akimitsu: Nature, 410 (2001) 63. https://doi.org/10.1038/35065039
  2. C. Buzea and T. Yamashita: Supercond. Sci. Technol., 14 (2001) R115. https://doi.org/10.1088/0953-2048/14/11/201
  3. A. Berenov, A. Serquis, X. Z. Liao, Y. T. Zhu, D. E. Peterson, Y. Bugoslavsky, K. A. Yates, M. G. Blamire, L. F. Cohen and J. L. MacManus-Driscoll: Supercond. Sci. Technol., 17 (2004) 1093. https://doi.org/10.1088/0953-2048/17/10/001
  4. J. D. Moore, G. K. Perkins, W. Branford, K. A. Yates, A. D. Caplin, L. F. Cohen, S. K. Chen, N. A. Rutter and J. L. MacManus-Driscoll: Supercond. Sci. Technol., 20 (2007) S278. https://doi.org/10.1088/0953-2048/20/9/S24
  5. Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: Appl. Phys. Lett., 79 (2001) 1154. https://doi.org/10.1063/1.1396629
  6. Y. Feng, Y. Zhao, Y. P. Sun, F. C. Liu, B. Q. Fu, L. Zhou, C. H. Cheng, N. Koshizuka and M. Murakami: Appl. Phys. Lett., 79 (2001) 3983. https://doi.org/10.1063/1.1426264
  7. Y. Sun, D. Yu, Z. Liu, T. Wang, J. He, J. Xiang, D. Zheng and Y. Tian, Supercond. Sci. Technol., 20 (2007) 261.
  8. S. K. Chen, M. Wei and J. L. MacManus-Driscoll: Appl. Phys. Lett., 88 (2006) 192512. https://doi.org/10.1063/1.2203209
  9. B. H. Jun, Y. J. Kim, K. S. Tan and C. J. Kim: Supercond. Sci. Technol., 21 (2008) 105006. https://doi.org/10.1088/0953-2048/21/10/105006
  10. K. S. Tan, S. K. Chen, B. H. Jun and C. J. Kim: Supercond. Sci. Technol., 21 (2008) 105013. https://doi.org/10.1088/0953-2048/21/10/105013
  11. B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. McDougall: Supercond. Sci. Technol., 14 (2001) 193. https://doi.org/10.1088/0953-2048/14/4/304
  12. B. Q. Fu, Y. Feng, G. Yan, C. F. Liu, L. Zhou, L. Z. Cao, K. Q. Ruan and X. G. Li: Physica C, 392-396 (2003) 1035. https://doi.org/10.1016/S0921-4534(03)00858-X
  13. P. Kova , I. Husek, T. Melišek and V. Strbik: Supercond. Sci. Technol., 18 (2005) 856. https://doi.org/10.1088/0953-2048/18/6/011
  14. H. Kumakura, A. Matsumoto, H. Fujii and K. Togano: Appl. Phys. Lett., 79 (2001) 2435. https://doi.org/10.1063/1.1407856
  15. E. Martinez, L. A. Angurel and R. Navarro: Supercond. Sci. Technol., 15 (2002) 1043. https://doi.org/10.1088/0953-2048/15/7/309
  16. S. I. Schlachter, A. Frank, B. Ringsdorf, H. Orschulko, B. Obst, B. Liu and W. Goldacker: Physica C, 445-448 (2006) 777. https://doi.org/10.1016/j.physc.2006.05.021
  17. Y. A. Kotov: J. Nanopart. Res., 5 (2003) 539. https://doi.org/10.1023/B:NANO.0000006069.45073.0b
  18. J. H. Yi, K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C. J. Kim: Physica C, 469 (2009) 1192. https://doi.org/10.1016/j.physc.2009.05.190
  19. C. P. Bean, Rev. Mod. Phys., 36 (1964) 31. https://doi.org/10.1103/RevModPhys.36.31
  20. B. H. Jun, N. K. Kim, K. S. Tan and C. J. Kim: J. Alloys and Compd., 492 (2010) 446. https://doi.org/10.1016/j.jallcom.2009.11.134
  21. S. Zhou and S. Dou: Solid State Sciences, 12 (2010) 105. https://doi.org/10.1016/j.solidstatesciences.2009.10.013