DOI QR코드

DOI QR Code

A Study on the Sintering Behavior of T42 High Speed Steel by Powder Injection Molding (PIM) Process

분말 사출성형법으로 제조된 T42 고속도 공구강의 소결거동

  • Park, Dong-Wook (School of Material Science and Engineering, GyeongSang National University) ;
  • Kim, Hye-Seong (School of Material Science and Engineering, GyeongSang National University) ;
  • Kwon, Young-Sam (Cetatech, Inc.) ;
  • Cho, Kwon-Koo (School of Material Science and Engineering, GyeongSang National University) ;
  • Lim, Su-Gun (School of Material Science and Engineering, GyeongSang National University) ;
  • Ahn, In-Shup (School of Material Science and Engineering, GyeongSang National University)
  • 박동욱 (국립 경상대학교 나노.신소재공학부 금소재료공학과) ;
  • 김혜성 (국립 경상대학교 나노.신소재공학부 금소재료공학과) ;
  • 권영삼 ((주)쎄타텍) ;
  • 조권구 (국립 경상대학교 나노.신소재공학부 금소재료공학과) ;
  • 임수근 (국립 경상대학교 나노.신소재공학부 금소재료공학과) ;
  • 안인섭 (국립 경상대학교 나노.신소재공학부 금소재료공학과)
  • Received : 2012.01.30
  • Accepted : 2012.02.24
  • Published : 2012.04.28

Abstract

Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at $60^{\circ}C$ for 8 hours and thermal debinded at an $N_2-H_2$ mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ($10^{-5}$ Torr) and various temperatures.

Keywords

References

  1. S. Gimenez, C. Zubizarreta, V. Trabadelo and I. Iturriza: Materials Science and Engineering A, 480 (2008) 130. https://doi.org/10.1016/j.msea.2007.06.082
  2. Z. Y. Liu, N. H. Loh, S. B. Tor and K. A. Khor: Materials Characerization, 49 (2003) 313.
  3. T. M Torralba, J. M. Ruiz-Roman, L. E. G. Cambronero, J. M. Ruiz-Prieto and M. Gutierrez-Stampa: Journal of Materials Processing Technology, 64 (1997) 387. https://doi.org/10.1016/S0924-0136(96)02590-3
  4. Z. Y. Liu, N. H. Loh, K. A. Khor and S. B. Tor: Materials Letters, 45 (2000) 32. https://doi.org/10.1016/S0167-577X(00)00070-7
  5. B. Sustarsic, L. Kosec, M. Henko and V. Leskovsek: Vacuum, 61 (2001) 471. https://doi.org/10.1016/S0042-207X(01)00161-0
  6. S. W. Kim, S. S. Ryu and E. R Baek: J. Kor. Powd. Met. Inst., 11 (2004) 179 (Korean). https://doi.org/10.4150/KPMI.2004.11.2.179
  7. H. Asgharzadeh, E.-S. Lee, W.-J. Park, J.-Y. Jung and S.- H. Ahn: Journal of the Korean Inst. of Met. & Mater., 35, (1997) 784.
  8. V. Trabadelo, S. Gimenez and I. Iturriza: Materials Science and Engineering A, 499 (2009) 360. https://doi.org/10.1016/j.msea.2008.08.043
  9. A. Simchi: Materials Science and Engineering A, 403, (2005) 290. https://doi.org/10.1016/j.msea.2005.05.017
  10. C. K. Son: M.S. Thesis, The Debinding and Sintering Behaviors of W-4.9Ni-2.1Fe MIM Part, Hanyang University, Seoul (1999) 5.

Cited by

  1. Effects Of Process Parameters On Cu Powder Synthesis Yield And Particle Size In A Wet-Chemical Process vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0107