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ON THE STABILITY OF THE MIXED TYPE FUNCTIONAL
EQUATION IN RANDOM NORMED SPACES

VIA FIXED POINT METHOD

Sun Sook Jin a and Yang-Hi Lee b, ∗

Abstract. In this paper, we prove the stability in random normed spaces via fixed
point method for the functional equation

f(x + y + z)− f(x + y)− f(y + z)− f(x + z) + f(x) + f(y) + f(z) = 0.

by using a fixed point theorem in the sense of L. Cădariu and V. Radu.

1. Introduction

In 1940, S. M. Ulam [20] raised a question concerning the stability of homomor-
phisms: Given a group G1, a metric group G2 with the metric d(·, ·), and a positive
number ε, does there exist a δ > 0 such that if a mapping f : G1 → G2 satisfies the
inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1 then there exists a homomorphism F : G1 → G2 with

d(f(x), F (x)) < ε

for all x ∈ G1? As mentioned above, when this problem has a solution, we say that
the homomorphisms from G1 to G2 are stable. In 1941, D. H. Hyers [5] gave a partial
solution of Ulam’s problem for the case of approximate additive mappings under the
assumption that G1 and G2 are Banach spaces. Hyers’ result was generalized by
T. Aoki [1] for additive mappings and Th. M. Rassias [16] for linear mappings by
considering the stability problem with unbounded Cauchy differences. The paper
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of Th. M. Rassias has provided a lot of influence in the development of stability
problems. The terminology Hyers-Ulam-Rassias stability originated from these his-
torical background. During the last decades, the stability problems of functional
equations have been extensively investigated by a number of mathematicians, see
[2]-[4], [8]-[12].

Recall, almost all subsequent proofs in this very active area have used Hyers’
method, called a direct method. Namely, the function F , which is the solution of
a functional equation, is explicitly constructed, starting from the given function f ,
by the formulae F (x) = limn→∞ 1

2n f(2nx) or F (x) = limn→∞ 2nf( x
2n ). In 2003, V.

Radu [15] observed that the existence of the solution F of a functional equation and
the estimation of the difference with the given function f can be obtained from the
fixed point alternative. In 2008, D. Mihet and V. Radu [14] applied this method to
prove the stability theorems of the Cauchy functional equation:

(1.1) f(x + y)− f(x)− f(y) = 0

in random normed spaces. We call solutions of (1.1) additive mappings.
In 2002, S.-M. Jung [7] established the general solution and investigated the

stability of the mixed type functional equation:

(1.2) f(x + y + z)− f(x + y)− f(y + z)− f(x + z) + f(x) + f(y) + f(z) = 0

by using the direct method. Now we consider the functional equation:

(1.3) f(x + y + z)− f(x + y)− f(y + z)− f(x + z) + f(x) + f(y) + f(z)− f(0) = 0

which is called the general quadratic functional equation. In this paper, using the
fixed point method, we will prove the stability for the functional equation (1.2) and
the general quadratic functional equation in random normed spaces. It is easy to
see that the mappings f(x) = ax2 + bx and f(x) = ax2 + bx + c are solutions of the
functional equation (1.2) and (1.3), respectively. Every solution of the mixed type
functional equation (1.2) and the general quadratic functional equation (1.3) are said
to be a quadratic-additive mapping and a general quadratic mapping, respectively.

2. Preliminaries

In this section, we state the usual terminology, notations and conventions of the
theory of random normed spaces, as in [18,19]. Firstly, the space of all probability
distribution functions is denoted by
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∆+ := {F : R ∪ {−∞,∞} → [0, 1]
∣∣F is left-continuous and nondecreasing

on R, where F (0) = 0 and F (+∞) = 1}.
And let the subset D+ ⊆ ∆+ be the set D+ := {F ∈ ∆+|l−F (+∞) = 1}, where
l−f(x) denotes the left limit of the function f at the point x. The space ∆+ is
partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if and
only if F (t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order is the
distribution function ε0 : R ∪ {0} → [0,∞) given by

ε0(t) =
{

0 if t ≤ 0,
1 if t > 0.

Definition 2.1 ([18]). A mapping τ : [0, 1] × [0, 1] → [0, 1] is called a continuous
triangular norm (briefly, a continuous t-norm) if τ satisfies the following conditions:

(a) τ is commutative and associative;
(b) τ is continuous;
(c) τ(a, 1) = a for all a ∈ [0, 1];
(d) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b) = min(a, b)
and τL(a, b) = max(a + b− 1, 0).

Definition 2.2. A random normed space (briefly, RN-space) is a triple (X, Λ, τ),
where X is a vector space, τ is a continuous t-norm, and Λ is a mapping from X

into D+ such that the following conditions hold:

(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0,
(RN2) Λαx(t) = Λx(t/|α|) for all x in X, α 6= 0 and all t ≥ 0,
(RN3) Λx+y(t + s) ≥ τ(Λx(t), Λy(s)) for all x, y ∈ X and all t, s ≥ 0.

If (X, ‖ · ‖) is a normed space, we can define a mapping Λ : X → D+ by

Λx(t) =
t

t + ‖x‖
for all x ∈ X and t > 0. Then (X, Λ, τM ) is a random normed space, which is called
the induced random normed space.

Definition 2.3. Let (X, Λ, τ) be an RN -space.

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for every
t > 0 and ε > 0, there exists a positive integer N such that Λxn−x(t) > 1−ε

whenever n ≥ N .
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(ii) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and
ε > 0, there exists a positive integer N such that Λxn−xm(t) > 1−ε whenever
n ≥ m ≥ N .

(iii) An RN-space (X, Λ, τ) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

Theorem 2.4 ([18]). If (X, Λ, τ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ Λxn(t) = Λx(t).

3. Main Results

We recall the fundamental result in the fixed point theory.

Theorem 3.1 ([13, 17]). Suppose that a complete generalized metric space (X, d),
which means that the metric d may assume infinite values, and a strictly contractive
mapping J : X → X with the Lipschitz constant 0 < L < 1 are given. Then, for
each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Let X and Y be vector spaces. We use the following abbreviations for a given
mapping f : X → Y by

Df(x, y, z) := f(x + y + z)− f(x + y)− f(y + z)− f(x + z) + f(x) + f(y) + f(z)

D′f(x, y, z) := f(x + y + z)− f(x + y)− f(y + z)− f(x + z) + f(x) + f(y) + f(z)

− f(0)

for all x, y, z ∈ X.

Lemma 3.2 ([6]). If f : X → Y is a mapping such that Df(x, y, z) = 0 for all
x, y, z ∈ X\{0}, then f is a quadratic-additive mapping.

Now we will establish the stability for the functional equations (1.2) in random
normed spaces via fixed point method.
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Theorem 3.3. Let X be a linear space, (Z, Λ′, τM ) be an RN-space, (Y,Λ, τM ) be
a complete RN-space and f : X → Y be a mapping with f(0) = 0 for which there is
ϕ : (X\{0})3 → Z such that

(3.1) ΛDf(x,y,z)(t) ≥ Λ′ϕ(x,y,z)(t)

for all x, y, z ∈ X\{0} and t > 0. If for all x, y, z ∈ X\{0} and t > 0 ϕ satisfies one
of the following conditions: (i) Λ′αϕ(x,y,z)(t) ≤ Λ′ϕ(2x,2y,2z)(t) for some 0 < α < 2,

(ii) Λ′ϕ(2x,2y,2z)(t) ≤ Λ′αϕ(x,y,z)(t) for some 4 < α

then there exists a unique quadratic-additive mapping F : X → Y such that

Λf(x)−F (x)(t) ≥
{

M(x, (2− α)t) if ϕ satisfies (i),
M(x, (α− 4)t) if ϕ satisfies (ii)

(3.2)

for all x ∈ X and t > 0, where

M(x, t) := τM

{
Λ′ϕ(x,x,−x)(t),Λ

′
ϕ(−x,−x,x)(t)

}
.

Moreover if α < 1 and Λ′ϕ(x,y,z) is continuous in x,y,z under the condition (i), then
f is a quadratic-additive mapping.

Proof. We will prove the theorem in two cases, ϕ satisfies the condition (i) or (ii).
Case 1. Assume that ϕ satisfies the condition (i). Let S be the set of all functions

g : X → Y with g(0) = 0 and introduce a generalized metric on S by

d(g, h) = inf
{
u ∈ R+

∣∣Λg(x)−h(x)(ut) ≥ M(x, t) for all x ∈ X\{0}} .

Consider the mapping J : S → S defined by

Jf(x) :=
f(2x)− f(−2x)

4
+

f(2x) + f(−2x)
8

then we have

Jnf(x) =
1
2

(
4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))

)

for all x ∈ X. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary constant with
d(g, f) ≤ u. From the definition of d, (RN2), and (RN3), for the given 0 < α < 2
we have

ΛJg(x)−Jf(x)

(αu

2
t
)

= Λ 3(g(2x)−f(2x))
8

− g(−2x)−f(−2x)
8

(αu

2
t
)

≥ τM

{
Λ 3(g(2x)−f(2x))

8

(
3αut

8

)
,Λ g(−2x)−f(−2x)

8

(
αut

8

)}

≥ τM

{
Λg(2x)−f(2x)(αut), Λg(−2x)−f(−2x) (αut)

}
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≥ τM

{
Λ′ϕ(2x,2x,−2x)(αt), Λ′ϕ(−2x,−2x,2x)(αt)

}

≥ M(x, t)

for all x ∈ X\{0}, which implies that

d(Jf, Jg) ≤ α

2
d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz constant
0 < α

2 < 1. Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
t

2

)
= Λ 3Df(x,x,−x)

8
−Df(−x,−x,x)

8

(
t

2

)

≥ τM

{
Λ 3Df(x,x,−x)

8

(
3t

8

)
, ΛDf(−x,−x,x)

8

(
t

8

)}

≥ τM

{
ΛDf(x,x,−x)(t), ΛDf(−x,−x,x)(t)

}

≥ τM

{
Λ′ϕ(x,x,−x)(t), Λ

′
ϕ(−x,−x,x)(t)

}

for all x ∈ X\{0}. It means that d(f, Jf) ≤ 1
2 < ∞ by the definition of d. Therefore

according to Theorem 3.1, the sequence {Jnf} converges to the unique fixed point
F : X → Y of J in the set T = {g ∈ S|d(f, g) < ∞}, which is represented by

F (x) := lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)
2n+1

)

for all x ∈ V . Since

d(f, F ) ≤ 1
1− α

2

d(f, Jf) ≤ 1
2− α

the inequality (3.2) holds. Next we will show that F is a quadratic-additive mapping.
Let x, y, z ∈ X. Then by (RN3) we have

ΛDF (x,y,z)(t) ≥ τM

{
Λ(F−Jnf)(x+y+z)

(
t

14

)
, Λ(F−Jnf)(x)

(
t

14

)
,

Λ(F−Jnf)(y)

(
t

14

)
, Λ(F−Jnf)(z)

(
t

14

)
, Λ(F−Jnf)(x+y)

(
t

14

)
,(3.3)

Λ(F−Jnf)(x+z)

(
t

14

)
, Λ(F−Jnf)(y+z)

(
t

14

)
, ΛDJnf(x,y,z)

(
t

2

)}

for all x, y, z ∈ X\{0} and n ∈ N. The first seven terms on the right hand side of
the above ineuality tend to 1 as n →∞ by the definition of F . Now consider that

ΛDJnf(x,y,z)

(
t

2

)
≥ τM

{
ΛDf(2nx,2ny,2nz)

2·4n

(
t

8

)
, ΛDf(−2nx,−2ny,−2nz)

2·4n

(
t

8

)
,
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ΛDf(2nx,2ny,2nz)
2·2n

(
t

8

)
,ΛDf(−2nx,−2ny,−2nz)

2·2n

(
t

8

)}

≥ τM

{
ΛDf(2nx,2ny,2nz)

(
4nt

4

)
, ΛDf(−2nx,−2ny,−2nz)

(
4nt

4

)
,

ΛDf(2nx,2ny,2nz)

(
2nt

4

)
,ΛDf(−2nx,−2ny,−2nz)

(
2nt

4

)}

≥ τM

{
Λ′ϕ(x,y,z)

(
4nt

4αn

)
,Λ′ϕ(−x,−y,−z)

(
4nt

4αn

)
,

Λ′ϕ(x,y,z)

(
2nt

4αn

)
,Λ′ϕ(−x,−y,−z)

(
2nt

4αn

) }

which tends to 1 as n →∞ by (RN3) and 2
α > 1 for all x, y, z ∈ X\{0}. Therefore

it follows from (3.3) that

ΛDF (x,y,z)(t) = 1

for each x, y, z ∈ X\{0} and t > 0. By (RN1) and Lemma 3.2, this means that
DF (x, y, z) = 0 for all x, y, z ∈ X. Assume that α < 1 and Λ′ϕ(x,y,z) is continuous
in x, y, z. If m, a1, b1, a2, b2, a3, b3 are any fixed integers with a1, a2, a3 6= 0, then we
have

lim
n→∞Λ′ϕ((2na1+b1)x,(2na2+b2)y,(2na3+b3)z)(t)

≥ lim
n→∞Λ′

ϕ
((

a1+
b1
2n

)
x,

(
a2+

b2
2n

)
y,

(
a3+

b3
2n

)
z
)

(
t

αn

)

≥ lim
n→∞Λ′

ϕ
((

a1+
b1
2n

)
x,

(
a2+

b2
2n

)
y,

(
a3+

b3
2n

)
z
)(mt)

= Λ′ϕ(a1x,a2y,a3z)(mt)

for all x, y, z ∈ X\{0} and t > 0. Since m is arbitrary, we have

lim
n→∞Λ′ϕ((2na1+b1)x,(2na2+b2)y,(2na3+b3)z)(t) ≥ lim

m→∞Λ′ϕ(a1x,a2y,a3z)(mt) = 1

for all x, y, z ∈ X\{0} and t > 0. From these, we get the inequality

ΛF (x)−f(x)(6t) ≥ lim
n→∞ τM

{
Λ(Df−DF )((2n+1)x,2nx,−2nx)(t),

Λ2(F−f)((2n+1)x)(2t), Λ(f−F )((2n+1+1)x)(t),

Λ(F−f)(2nx)(t), Λ(F−f)(−2nx)(t)
}

≥ lim
n→∞ τM

{
Λ′ϕ((2n+1)x,2nx,−2nx)(t),
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M((2n + 1)x, (2− α)t),M
(
(2n+1 + 1)x, (2− α)t

)
,

M(2nx, (2− α)t),M (−2nx, (2− α)t)
}

= 1

for all x ∈ X\{0}. From the above inequality and the fact f(0) = 0 = F (0), we
obtain f ≡ F . This completes the proof of this theorem.

Case 2. We take α > 4 and let ϕ satisfy the condition (ii). Let the set (S, d) be
as in the proof of Case 1. Now we consider the mapping J : S → S defined by

Jg(x) := g
(x

2

)
− g

(
−x

2

)
+ 2

(
g

(x

2

)
+ g

(
−x

2

))

for all g ∈ S and x ∈ V . Notice that

Jng(x) = 2n−1
(
g

( x

2n

)
− g

(
− x

2n

))
+

4n

2

(
g

( x

2n

)
+ g

(
− x

2n

))

for all x ∈ X. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary constant with
d(g, f) ≤ u. From the definition of d, (RN2), and (RN3), we have

ΛJg(x)−Jf(x)

(
4u

α
t

)
= Λ3(g(x

2
)−f(x

2
))+g(−x

2
)−f(−x

2
)

(
4u

α
t

)

≥ τM

{
Λ3(g(x

2
)−f(x

2
))

(
3u

α
t

)
, Λg(−x

2
)−f(−x

2
)

(u

α
t
)}

≥ τM

{
Λg(x

2
)−f(x

2
)

(u

α
t
)

,Λg(−x
2
)−f(−x

2
)

(u

α
t
)}

≥ τM

{
Λ′ϕ(x

2
, x
2
,−x

2
)

(
t

α

)
, Λ′ϕ(−x

2
,−x

2
, x
2
)

(
t

α

)}

≥ M(x, t)

for all x ∈ X\{0}, which implies that

d(Jf, Jg) ≤ 4
α

d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz constant
0 < 4

α < 1. Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
t

α

)
= Λ−Df(x

2
, x
2
,−x

2
)

(
t

α

)

≥ Λ′ϕ(x
2
, x
2
,−x

2
)

(
t

α

)

≥ Λ′ϕ(x,x,−x)(t)

for all x ∈ X\{0}. It means that d(f, Jf) ≤ 1
α < ∞ by the definition of d. Therefore

according to Theorem 3.1, the sequence {Jnf} converges to the unique fixed point
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F : X → Y of J in the set T = {g ∈ S|d(f, g) < ∞}, which is represented by

F (x) := lim
n→∞

(
2n−1

(
f

( x

2n

)
− f

(
− x

2n

))
+

4n

2

(
f

( x

2n

)
+ f

(
− x

2n

)))

for all x ∈ X. Since
d(f, F ) ≤ 1

1− 4
α

d(f, Jf) ≤ 1
α− 4

the inequality (3.2) holds. Next we will show that F is quadratic-additive. Let
x, y, z ∈ X. Then by (RN3) we have the inequality (3.3) for all x, y, z ∈ X\{0} and
n ∈ N. The first seven terms on the right hand side of the inequality (3.3) tend to
1 as n →∞ by the definition of F . Now consider that

ΛDJnf(x,y,z)

(
t

2

)
≥ τM

{
Λ22n−1Df( x

2n , y
2n , z

2n )

(
t

8

)
,Λ22n−1Df(−x

2n ,−y
2n ,−z

2n )

(
t

8

)
,

Λ2n−1Df( x
2n , y

2n , z
2n )

(
t

8

)
, Λ−2n−1Df(−x

2n ,−y
2n ,−z

2n )

(
t

8

)}

≥ τM

{
Λ′ϕ(x,y,z)

(
αnt

4n+1

)
, Λ′ϕ(−x,−y,−z)

(
αnt

4n+1

)
,

Λ′ϕ(x,y,z)

(
αnt

2n+2

)
, Λ′ϕ(−x,−y,−z)

(
αnt

2n+2

)}

which tends to 1 as n → ∞ by (RN3) for all x, y, z ∈ X\{0}. Therefore it follows
from (3.3) that

ΛDF (x,y,z)(t) = 1

for each x, y, z ∈ X\{0} and t > 0. By (RN1) and Lemma 3.1, this means that
DF (x, y, z) = 0 for all x, y, z ∈ X. It completes the proof of Theorem 3.3. ¤

Now we will establish the stability for the functional equations (1.3) in random
normed spaces.

Theorem 3.4. Let X, (Z, Λ′, τM ), (Y, Λ, τM ), ϕ and M(x, t) be as in Theorem 3.3.
If f : X → Y is a mapping such that

(3.4) ΛD′f(x,y,z)(t) ≥ Λ′ϕ(x,y,z)(t)

for all x, y, z ∈ X\{0} and t > 0, then there exists a unique general quadratic
mapping F : X → Y satisfying F (0) = f(0) and (3.2) for all x ∈ X\{0} and t > 0.

Proof. Let f̃ = f − f(0). Then by (3.4) we have

ΛDf̃(x,y,z)(t) = ΛD′f(x,y,z)(t) ≥ Λ′ϕ(x,y,z)(t)

for all x, y, z ∈ X\{0} and t > 0 with f̃(0) = 0. By Theorem 3.3, there exists
a unique mapping F̃ : X → Y satisfying (3.2) for f̃ and DF̃ (x, y, z) = 0. Put
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F = F̃ + f(0), then we easily show that D′F (x, y, z) = 0 and F satisfying (3.2) for
f . ¤

Now we have a generalized Hyers-Ulam stability of the quadratic-additive func-
tional equation (1.2) in the framework of normed spaces. Let Λx(t) = t

t+‖x‖ . Then
(X, Λ, τM ) is an induced random normed space, which leads us to get the following
result.

Corollary 3.5. Let X be a linear space and Y a complete normed-space. And let
f : X → Y be a mapping with f(0) = 0 for which there is ϕ : (X\{0})3 → [0,∞)
such that

‖Df(x, y, z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X\{0}. If, for all x, y, z ∈ X\{0}, ϕ satisfies one of the following
conditions:

(i) αϕ(x, y, z) ≥ ϕ(2x, 2y, 2z) for some 0 < α < 2,

(ii) ϕ(2x, 2y, 2z) ≥ αϕ(x, y, z) for some 4 < α

then there exists a unique quadratic-additive mapping F : X → Y such that

‖f(x)− F (x)‖ ≤
{

Φ(x)
2−α if ϕ satisfies (i),
Φ(x)
α−4 if ϕ satisfies (ii)

(3.5)

for all x ∈ X\{0}, where Φ(x) is defined by

Φ(x) = max(ϕ(x, x,−x), ϕ(−x,−x, x)).

Moreover, if 0 < α < 1 and ϕ is continuous under the condition (i), then f is a
quadratic-additive mapping.

Now we have a Hyers-Ulam-Rassias stability of the quadratic-additive functional
equation (1.2).

Corollary 3.6. Let X be a normed space, p, q, r ∈ [0, 1)∪ (2,∞) and Y a complete
normed-space. If f : X → Y is a mapping such that

(3.6) ‖Df(x, y, z)‖ ≤ ‖x‖p + ‖y‖q + ‖z‖r

for all x, y, z ∈ X\{0} with f(0) = 0, then there exists a unique quadratic-additive
mapping F : X → Y such that

‖f(x)− F (x)‖ ≤



‖x‖p+‖x‖q+‖x‖r

2−2max{p,q,r} if 0 ≤ p, q, r < 1,

‖x‖p+‖x‖q+‖x‖r

2min{p,q,r}−4
if 2 < p, q, r

(3.7)

for all x ∈ X\{0}.
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Proof. It follows from Corollary 3.5 by putting ϕ(x, y, z) = ‖x‖p + ‖y‖q + ‖z‖r with
α = 2max{p,q,r} < 2 if 0 ≤ p, q, r < 1 and α = 2min{p,q,r} > 4 if p, q, r > 2. ¤

Corollary 3.7. Let X be a normed space, p, q, r < 0 and Y a complete normed-
space. If f : X → Y is a mapping satisfying (3.6) for all x, y, z ∈ X\{0}, then f is
itself a quadratic-additive mapping.

Proof. By choosing a fixed x ∈ X\{0}, we have

‖2f(0)‖ = lim
n→∞

∥∥Df
(
2n+1x,−2nx,−2nx

)
+ Df(−2n+1x, 2nx, 2nx)

∥∥

≤ lim
n→∞ 2

(‖2n+1x‖p + ‖2nx‖q + ‖2nx‖r
)

≤ lim
n→∞ 2np (2‖2x‖p + 2‖x‖q + 2‖x‖r) = 0.

It follows from Corollary 3.5 by putting ϕ(x, y, z) = ‖x‖p + ‖y‖q + ‖z‖r with α =
2max{p,q,r} < 1. ¤

We have a general Hyers-Ulam stability results of the general quadratic functional
equation (1.3) as a corollary of Theorem 3.4.

Corollary 3.8. Let X, Y , ϕ and Φ(x) be as in Theorem 3.3. If f : X → Y is a
mapping such that

‖D′f(x, y, z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X\{0}, then there exists a unique general quadratic mapping F :
X → Y such that F (0) = f(0) and (3.5) holds.

Now we have Hyers-Ulam-Rassias stability of the general quadratic functional
equation (1.3).

Corollary 3.9. Let X be a normed space, p, q, r ∈ [0, 1)∪ (2,∞), and Y a complete
normed-space. If f : X → Y is a mapping such that

(3.8) ‖D′f(x, y, z)‖ ≤ ‖x‖p + ‖y‖q + ‖z‖r

for all x, y, z ∈ X\{0}, then there exists a unique general quadratic mapping F :
X → Y such that F (0) = f(0) and (3.7) holds.

Corollary 3.10. Let X be a normed space, p, q, r < 0 and Y a complete normed-
space. If f : X → Y is a mapping satisfying (3.8) for all x, y, z ∈ X\{0}, then f is
itself a general quadratic mapping.
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