조명 변화 환경에서 이진패턴 영상을 이용한 얼굴인식 방법에 관한 연구

A Study on Face Recognition Method based on Binary Pattern Image under Varying Lighting Condition

  • 김동주 (대구경북과학기술원 IT융합연구부) ;
  • 손명규 (대구경북과학기술원 IT융합연구부) ;
  • 이상헌 (대구경북과학기술원 IT융합연구부)
  • Kim, Dong-Ju (Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Sohn, Myoung-Kyu (Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Lee, Sang-Heon (Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology)
  • 투고 : 2011.02.16
  • 심사 : 2012.03.05
  • 발행 : 2012.03.25

초록

본 논문에서는 MCS-LBP 이진패턴 영상과 2D-PCA 알고리즘을 이용한 조명 변화에 강인한 얼굴인식 시스템에 대하여 제안한다. 이진패턴 변환은 기존의 얼굴인식 및 표정인식 분야에 사용되는 기법으로, 일반적으로 조명 변화에 강인한 특성을 갖는다. 이에 본 논문에서는 기존의 LBP보다 조명 변화에 더 강인한 MCS-LBP를 제안하고, 더불어 2D-PCA 알고리즘과 결합하는 얼굴인식 시스템을 제안한다. 제안하는 얼굴인식 방법의 성능평가는 기존의 다양한 이진패턴 변환 영상과 얼굴인식에 널리 사용되고 있는 PCA, LDA, 2D-PCA 및 가버영상의 ULBP 히스토그램 특징을 사용하여 수행하였다. 다양한 조명변화 환경에서 구축된 YaleB, extended YaleB, CMU-PIE 등의 공인 얼굴 데이터베이스를 이용하여 실험한 결과, 제안하는 MCS-LBP영상과 2D-PCA 특징을 사용한 방법이 가장 우수한 인식 성능을 보였다.

In this paper, we propose a illumination-robust face recognition system using MCS-LBP and 2D-PCA algorithm. A binary pattern transform which has been used in the field of the face recognition and facial expression, has a characteristic of robust to illumination. Thus, this paper propose MCS-LBP which is more robust to illumination than previous LBP, and face recognition system fusing 2D-PCA algorithm. The performance evaluation of proposed system was performed by using various binary pattern images and well-known face recognition features such as PCA, LDA, 2D-PCA and ULBP histogram of gabor images. In the process of performance evaluation, we used a YaleB face database, an extended YaleB face database, and a CMU-PIE face database that are constructed under varying lighting condition, and the proposed system which consists of MCS-LBP image and 2D-PCA feature show the best recognition accuracy.

키워드

참고문헌

  1. N. B. Kachare and V. S. Inamdar, "Survey of face recognition techniques," International Journal of Computer Applications, Vol. 1, no. 1, pp. 29-33, 2010.
  2. E. H. Land and J. J. McCann, "Lightness and retinex theory," Journal of the Optical Society of America, Vol. 61, pp. 1-11, 1971. https://doi.org/10.1364/JOSA.61.000001
  3. 최종근, 정선태, 조성원, "조명영향 분리 얼굴 고유특성 텍스쳐 부분공간 기반 얼굴 이미지 조명 정규화," 전자공학회논문지, 제47권 SP편, 제1호, 25-34쪽, 2010년 1월
  4. 이상섭, 이수영, 김중규, "조명 환경에 강인한 얼굴인식 성능향상을 위한 Bilateral 필터 기반 조명 정규화 방법에 관한 연구," 전자공학회논문지, 제47권 SP편, 제4호, 49-55쪽, 2010년 7월
  5. W. Chen, M. J. Er, and S. Wu, "Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain," IEEE Transactions on Systems, Man and Cybernetics - Part B, Vol. 36, no. 2, pp. 458-466, 2006. https://doi.org/10.1109/TSMCB.2005.857353
  6. X. Xie and K. M. Lam, "Face recognition under varying illumination based on a 2D face shape model," Pattern Recognition, Vol. 38, pp. 221-230, 2005. https://doi.org/10.1016/S0031-3203(04)00275-4
  7. Y. Adini, Y. Moses, and S. Ullman, "Face recognition: the problem of compensating for changes in illumination direction," IEEE Trans. on PAMI, Vol. 19, no. 7, pp. 721-732, 1997. https://doi.org/10.1109/34.598229
  8. C. Sanderson and K. K. Paliwal, "Fast features for face authentication under illumination direction changes," Pattern Recognition Letters, Vol. 24, pp. 2409-2419, 2003. https://doi.org/10.1016/S0167-8655(03)00070-9
  9. 설태인, 김상훈, 정선태, "가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식," 전자공학회논문지, 제 45권 SC편, 제6호, 67-76쪽, 2008년 11월
  10. R. Basri and D. W. Jacobs, "Lambertian reflectance and linear subspaces," IEEE Trans. on PAMI, Vol. 25, no. 2, pp. 218-233, 2003. https://doi.org/10.1109/TPAMI.2003.1177153
  11. L. Zhang and D. Samaras, "Face recognition under variable lighting using harmonic image exemplars," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 19-25, 2003.
  12. T. hong, H. Kim, H. Moon, Y. Kim, J. Lee, and S. Moon, "Face representation method using Pixel-to-Vertex Map(PVM) for 3D model based face recognition," in Lecture Notes in Computer Science 3979, pp. 21-28, 2006.
  13. W. Zhang, S. Shan, H. Zhang, W. Gao, and X. Chen, "Multi-resolution histograms of local variation patterns (MHLVP) for robust face recognition," in Proc. Audio- and Video-based Biometric Person Authentication (AVBPA), pp. 937-944, 2005.
  14. Z. Lei, S. Liao, R. He, M. Pietikainen, and S. Z. Li, "Gabor volume based local binary pattern for face representation and recognition," in Proc. IEEE International Conference Automatic Face and Gesture Recognition, pp. 1-6, 2008.
  15. Xiaoyang Tan and Bill Triggs, "Enhanced local texture feature sets for face recognition under difficult lighting conditions," IEEE Transactions on Image Processing, Vol. 19, no. 6, pp. 1635-1650, 2010. https://doi.org/10.1109/TIP.2010.2042645
  16. C. Shan, S. Gong and P. W. McOwan, "Facial expression recognition based on local binary pattern: A comprehensive study," Image and Vision Computing, Vol. 27, pp. 803-816, 2009. https://doi.org/10.1016/j.imavis.2008.08.005
  17. T. Ahonen, A. Hadid, and M. Pietikainen, "Face recognition with local binary patterns," in Proc. Euro Conference Computer Vision (ECCV), pp. 469-481, 2004.
  18. G. Zhang, X. Huang, S. Z. Li, Y. Wang, and X. Wu, "Boosting local binary pattern-based face recognition," in Proc. Advances in Biometric Person Authentication, Vol. 3338, pp. 179-186, 2004.
  19. X. Fu and W. Wei, "Centralized binary patterns embedded with image euclidean distance for facial expression recognition," Fourth International Conference on Natural Computation, Vol. 4, pp. 115-199, 2008.
  20. K. Meena and A. Suruliandi, "Local binary patterns and its variants for face recognition," International Conference on Recent Trends in Information Technology, pp. 782-786, 2011.
  21. M.. Kirby and L. Sirovich, "Application of the Karhunen-Loeve procedure for the characterization of human faces," IEEE Trans. on PAML, Vol. 12, no. 1, pp. 103-108, 1990. https://doi.org/10.1109/34.41390
  22. M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, Vol. 3, no. 1, pp. 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  23. K. Etemad and R. Chellappa, "Discriminant analysis for recognition of human face images," Journal of the Optical Society fo America A, Vol. 14, no. 8, pp. 1724-1733, 1997. https://doi.org/10.1364/JOSAA.14.001724
  24. P. N. Belnumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. Fisherfaces : Recognition using class specific linear projection," IEEE Trans. on PAMI, Vol. 19, no. 7, pp. 711-720, 1997. https://doi.org/10.1109/34.598228
  25. Y. Jian, Z. David, F. Alejandro, and J. Y. Yang, "Two-dimensional PCA: A new approach to appearance-based face representation and recognition," IEEE Trans. on PAMI, Vol. 26, no. 1, pp. 131-137, 2004. https://doi.org/10.1109/TPAMI.2004.1261097
  26. 설태인, 정선태, 김상훈, 장언동, 조성원, "2차원 PCA 얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식," 전자공학회논문지, 제47권 SP편, 제1호, 35-43쪽, 2010년 1월
  27. G. Donato, M. Bartlett, J. Hager, P. Ekman, and T. Sejnowski, "Classifying facial actions," IEEE Trans. on PAMI, Vol. 21, no. 10, pp. 974-989, 1999. https://doi.org/10.1109/34.799905
  28. T. Ahonen, A. Hadid, and M. Pietikainen, "Face recognition with local binary patterns," in Proc. Euro Conference Computer Vision (ECCV), pp. 469-481, 2004.
  29. T. Ahonen, A. Hadid, and M. Pietikainen, "Face recognition based on the appearance of local regions," in Proc. International Conference Pattern Recognition (ICPR), pp. 153-156, 2004.
  30. G. Zhang, X. Huang, S. Z. Li, Y. Wang, and X. Wu, "Boosting local binary pattern (LBP)-based face recognition," in Proc. Advances in Biometric Person Authentication, pp. 179-186, 2004.
  31. J. Zhao, H. Wang, H. Ren, and S.-C. Kee, "LBP discriminant analysis for face verification," in Proc. IEEE Workshop on Face Recognition Grand Challenge Experiments, Vol. 3, 2005.
  32. Y. Rodriguez and S. Marcel, "Face authentication using adapted local binary pattern histograms," in Proc. Euro Conference Computer Vision (ECCV), pp. 321-332, 2006.
  33. X. Tan and B. Triggs, "Enhanced local texture feature sets for face recognition under difficult lighting conditions," in Proc. Analysis and Modeling of Faces and Gestures, 168-182, 2007.