Vacuum Stripping of $CO_2$ from Aqueous MEA Solutions Using PDMS-PE Composite Membrane Contactor

MEA 수용액으로부터 PDMS-PE 복합막 접촉기를 이용한 이산화탄소 감압탈거

  • Kim, Jeong-Hoon (Resources Separation & Recovery Research Group (RSRRG), Korea Research Institute of Chemical Technology) ;
  • Ahn, Hyo-Seong (Resources Separation & Recovery Research Group (RSRRG), Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Resources Separation & Recovery Research Group (RSRRG), Korea Research Institute of Chemical Technology)
  • 김정훈 (한국화학연구원 환경자원연구센터 자원분리회수그룹) ;
  • 안효성 (한국화학연구원 환경자원연구센터 자원분리회수그룹) ;
  • 김정훈 (한국화학연구원 환경자원연구센터 자원분리회수그룹)
  • Received : 2011.11.24
  • Accepted : 2012.02.28
  • Published : 2012.02.29

Abstract

Low-temperature carbon dioxide stripping by a vacuum membrane stripping technology was studied as a substitute for the stripping process in a conventional aqueous amine process. Composite membranes with $5{\mu}m$ thickness of PDMS (polydimethylsiloxane) dense layer on a PE (polyethylene) support layer were prepared by a casting method and used as a membrane contactor for $CO_2$ stripping. Aqueous amine solutions of 30 wt% MEA (monoethanolamine) were used as absorbents. $CO_2$ flux was examined under various operating conditions by varying the vacuum pressure (60~360 mmHg (abs.)), stripping temperature ($25{\sim}80^{\circ}C$), $CO_2$ loading (0.5~0.7). $CO_2$ stripping flux increased with increasing temperature and $CO_2$ loading as well as decreasing vacuum pressure. PDMS-PE composite membrane has stability for vacuum stripping process compared with PTFE porous membrane.

본 연구에서는 석탄 화력발전소의 연소 후 $CO_2$ 회수 기술인 알칸올 아민 수용액을 이용한 아민흡수법에서 전체 운전비의 80% 가량을 차지하는 탈거에너지의 저감을 위해 새로운 탈거기술인 분리막을 이용한 감압탈거 기술을 제시하고자 한다. 막의 소재로는 소수성막인 PE (polyethylene)를 지지체로 하고 $5{\mu}m$ 두께의 PDMS (polydimethylsiloxane)를 코팅한 복합막을 제조하여 적용하였으며, 흡수액으로 MEA (monoethanolamine) 30 wt% 수용액을 사용하였다. 온도의 변화에 따른 영향을 알아보기 위하여 흡수액 온도를 $25{\sim}80^{\circ}C$로 변화시켜 이산화탄소의 탈거특성을 살펴보았으며, 흡수용액의 $CO_2$ 함량($CO_2$ loading)에 따른 영향을 고찰하기 위하여 $CO_2$ 함량을 변화시켰다. 또한 감압탈거 시 탈거측 압력을 60~360 mmHg(abs.)로 변화시켜 진공도에 따른 탈거특성을 연구하였다. 아민수용액의 온도가 증가할수록, 이산화탄소 부하량이 증가할수록 이산화탄소의 탈거량은 증가하는 경향을 보이고 있으며, 감압이 감소함에 따라 이산화탄소의 탈거량 역시 증가하고 있는 것을 확인하였다. 막의 안정성 실험 결과 PTFE 단일막에 비하여 PDMS-PE 복합막의 경우 감압탈거 막공정에 적용하기 안정한 막이라고 판단된다.

Keywords

References

  1. D. deMontigny, P. Tontiwachwuthikul, and A. Chakma, "Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for $CO_{2}$ absorption", J. Membr. Sci., 277, 99 (2006). https://doi.org/10.1016/j.memsci.2005.10.024
  2. N. Nishikawa, M. Ishibashi, H. Ohata, and N. Akutsu, "$CO_{2}$ removal by hollow fibers Gas-liquid contactor", Energy Convers. Manage, 36, 415 (1995). https://doi.org/10.1016/0196-8904(95)00033-A
  3. A. Mansourizadeh and A. F. Ismail, "Hollow fiber gas-liquid membrane contactors for acid gas capture: A review", J. Hazardous Materials, 171, 38 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.026
  4. K. Li and W. K. Teo, "Use of permeation and absorption methods for $CO_{2}$ removal in hollow fiber membrane modules", Sep. Purif. Technol., 13, 79 (1998). https://doi.org/10.1016/S1383-5866(97)00059-2
  5. J. Ren, R. Wang, H. Y. Zhang, Z. Li, D. T. Liang, and J. H. Tay, "Effect of PVDF dope rheology on the structure of hollow fiber membranes used for $CO_{2}$ capture", J. Membr. Sci., 281, 334 (2006). https://doi.org/10.1016/j.memsci.2006.04.003
  6. D. Wang, W. K. Teo, and K. Li, "Removal of $H_{2}$S to ultra low concentrations using an asymmetric hollow fiber membrane module", Sep. Purif. Technol., 27, 33 (2002). https://doi.org/10.1016/S1383-5866(01)00186-1
  7. D. Wang, W. K. Teo, and K. Li, "Selective removal of trace $H_{2}S$ from gas streams containing $CO_{2}$ using hollow fiber modules/contactors", Sep. Purif. Technol., 35, 125 (2004). https://doi.org/10.1016/S1383-5866(03)00135-7
  8. S. Atchariyawut, C. Feng, R. Wang, R. Jiraratananon, and D. T. Liang, "Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fiber", J. Membr. Sci., 285, 272 (2006). https://doi.org/10.1016/j.memsci.2006.08.029
  9. H. Jeon, H. Ahn, I. Song, H.-K. Jeong, Y. Lee, and H.-K. Lee, "Separation of sulfur dioxide by circulatory porous polymer membrane contactor", Membrane Journal, 17, 302 (2007)
  10. S. Koonaphapdeelert, Z. Wu, and K. Li, "Carbon dioxide stripping in ceramic hollow fiber membrane contactors", Chem. Eng. Sci., 64, 1 (2009). https://doi.org/10.1016/j.ces.2008.09.010
  11. K. Okabe, H. Mano, and Y. Fujioka, "Separation and recovey of carbon by a membrane flash process", Int. J. Greenhouse Gas Contl., 2, 485 (2008). https://doi.org/10.1016/j.ijggc.2008.06.004
  12. O. Falk-Pederson and H. Dannstorm, "Separation of carbon dioxide from offshore gas turbine exhaust", Energy Conversion. Management, 38, 81 (1997). https://doi.org/10.1016/S0196-8904(96)00250-6
  13. A. Haghtalab and A. Shojaeian, "Modeling solubility of acid gases in alkanolamines using the nonelectrolyte Wilson-nonrandom factor model", Equilibria, 289, 6 (2010).
  14. J. D. Lawson and A. W. Garst, "Gas sweetening data: Equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous amine and aqueous diethanolamine solutions", J. Chem. Eng. Data, 21, 20 (1976). https://doi.org/10.1021/je60068a010
  15. M. D. Cheng, A. R. Caparanga, A. N. Soriano, and M. Li, "Solubility of $CO_{2}$ in the solvent system (water + monoethanolamine + triethanolamine)", J. Chem. Thermodynamics, 42, 342 (2010). https://doi.org/10.1016/j.jct.2009.09.005
  16. J.-G. Shim, J.-H. Kim, K.-R. Jang, and H.-M. Eum, "Absorption characteristic of MEA with carbon dioxide from the real flue gas using a pilot plant", J. of KSEE, 25, 1557 (2003)