Hydrogen separation of $V_{99.8}B_{0.2}$ Alloy Membrane in Water-gas shift Reaction

수성 가스 전이반응에서 $V_{99.8}B_{0.2}$ 합금 분리막의 수소분리

  • Jeon, Sung-Il (Green House Gas Center, Korea Institute of Energy Research) ;
  • Jung, Yeong-Min (Green House Gas Center, Korea Institute of Energy Research) ;
  • Park, Jung-Hoon (Green House Gas Center, Korea Institute of Energy Research) ;
  • Lee, Yong-Taek (Department of Chemical Engineering, Chung Nam National University)
  • 전성일 (한국에너지기술연구원 온실가스센터) ;
  • 정영민 (한국에너지기술연구원 온실가스센터) ;
  • 박정훈 (한국에너지기술연구원 온실가스센터) ;
  • 이용택 (충남대학교 화학공학과)
  • Received : 2011.12.03
  • Accepted : 2012.02.24
  • Published : 2012.02.29

Abstract

The influence of co-existing gases on the hydrogen permeation without sweep gas was studied through a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane. Membranes have been investigated in the pressure range 1.5-8.0 bar under pure hydrogen, hydrogen-carbon dioxide and hydrogen-carbon monoxide gas mixture without sweep gas at $400^{\circ}C$. Preliminary hydrogen permeation experiments without sweep gas have been confirmed that hydrogen flux was $40.7mL/min/cm^2$ for a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane (thick : 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen flux was $21.4mL/min/cm^2$ for $V_{99.8}B_{0.2}$ alloy membrane using $H_2/CO_2$ as the feed gas. The hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of pressure when $H_2/CO_2$and $H_2/CO$mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD, SEM/EDX results after permeation test that the Pd-coated $V_{99.8}B_{0.2}$ alloy membrane had good stability and durability for various mixtures feeding condition.

팔라듐이 코팅된 $V_{99.8}B_{0.2}$ 합금 분리막을 통해 sweep 가스를 사용하지 않고 수소 투과 시 혼합가스의 영향에 대해 알아보았다. 분리막은 $400^{\circ}C$에서 sweep 가스를 사용하지 않고 순수 수소, 수소/이산화탄소, 수소/일산화탄소의 혼합가스를 1.5~8.0 bar의 압력으로 실험하였다. Sweep 가스를 사용하지 않고 수소만을 공급한 투과 실험에서 팔라듐 코팅된 $V_{99.8}B_{0.2}$ 합금 분리막(두께 : 0.5 mm)의 수소 투과량은 $40.7mL/min/cm^2$였다. 또한 수소/이산화탄소를 공급한 투과실험에서 $V_{99.8}B_{0.2}$ 합금 분리막의 수소 투과량은 $21.4mL/min/cm^2$였다. 수소/이산화탄소 및 수소/일산화탄소 혼합가스를 각각 공급할 때 투과량은 압력에 상관없이 수소 분압 감소 만큼 감소하였고 모든 경우 Sievert 법칙을 잘 만족시켰다. 투과 후 분리막의 XRD, SEM/EDX 결과로부터 $V_{99.8}B_{0.2}$ 합금 분리막은 여러 혼합가스에 대해 안정성과 내구성이 우수하다는 것을 알 수 있었다.

Keywords

References

  1. L. Dubois, P. K. Mbasha, and D. Thomas, "$CO_{2}$ adsorption into aqueous solution of a polyamine, a sterically hindered amine, and their blends", Chem. Eng. Technol., 33, 461 (2010). https://doi.org/10.1002/ceat.200900489
  2. R. Bounaceur, N. Lape, D. Roizard, C. Vallieres, and E. Favre, "Membrane processes for post-combustion carbon dioxide capture: a parametric study", Energy, 31, 2556 (2006). https://doi.org/10.1016/j.energy.2005.10.038
  3. H. Hong, R. Field, M. Gazzino, and AF. Ghoniem, "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle", Energy, 35, 5391 (2010). https://doi.org/10.1016/j.energy.2010.07.016
  4. P. Chiesa, T. G. Kreutz, and G. G. Lozza, "$CO_{2}$ sequestration from IGCC power plants by means of metallic membranes", J. Eng. For Gas Turbines Power, 129, 123 (2007). https://doi.org/10.1115/1.2181184
  5. W. Wang, K. Ishikawa, and K. Aoki, "Microstructural change-induced lowering of hydrogen permeability in eutectic Nb-TiNi alloy", J. Membr. Sci., 351, 65 (2010). https://doi.org/10.1016/j.memsci.2010.01.029
  6. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, "Hydrogen permeation characteristics of V-Ni-Al alloys", Int. J. Hydrogen Energy, 28, 1229 (2003).
  7. M. D. Dolan, "Non-Pd BCC alloy membranes for industrial hydrogen separation", J. Membr. Sci., 362, 12 (2010). https://doi.org/10.1016/j.memsci.2010.06.068
  8. S. A. Steward, "Review of hydrogen isotope permeability through materials", Lawrence Livermore National Laboratory Report, UCRL-53441 (1983).
  9. S. I. Jeon, J. H. Park, and Y. T. Lee, "Effects of CO and CO2 on hydrogen permeation through Pd-coated V-Ti-Ni alloy membranes", Membrane Journal, 21, 3 (2011).
  10. C. Nishimura, M. Komaki, and M. Amano, "Hydrogen permeation characteristics of vanadium-molybden um alloys", Trans. Mat. Res. Soc. Jpn., 18B 1273 (19 94).
  11. C. Nishimura, T. Ozaki, M. Komaki, and Y. Zhang, "Hydrogen permeation and transmission electron microscope observations of V-Al alloys", J. Alloys Compd., 356-357, 295 (2003). https://doi.org/10.1016/S0925-8388(02)01273-2
  12. S. I. Jeon, J. H. Park, S. J. Lee, and S. H. Choi, "Fabrication and stability of V/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 62 (2010).
  13. S. J. Lee, S. I. Jeon, and J. H. Park, "Fabrication and stability of Pd coated Ta/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 69 (2010).
  14. A. Basile, F. Gallucci, A. Iulianelli, G. F. Tereschenko, M. M. Ermilova, and N. V. Orekhova, "Ti-Ni-Pd dense membranes-The effect of the gas mixtures on the hydrogen permeation", J. Membr. Sci., 310, 44 (2008). https://doi.org/10.1016/j.memsci.2007.10.028
  15. H. Li, A. Goldbach, W. Li, and H. Xu, "PdC formation in ultra-thin Pd membranes during separation of $H_{2}$/CO mixtures", J. Membr. Sci., 299, 130 (2007). https://doi.org/10.1016/j.memsci.2007.04.034