DOI QR코드

DOI QR Code

Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

  • Cho, Hyunjin (Soft Innovative Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Changhyup (Soft Innovative Materials Research Center, Korea Institute of Science and Technology) ;
  • Oh, In Seoup (Soft Innovative Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Sungchan (Soft Innovative Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hwan Chul (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Kim, Myung Jong (Soft Innovative Materials Research Center, Korea Institute of Science and Technology)
  • 투고 : 2012.08.01
  • 심사 : 2012.09.11
  • 발행 : 2012.10.31

초록

Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Science and Technology (KIST)

참고문헌

  1. Oshima H, Suzuki Y, Shimazu T, Maruyama S. Novel and simple synthesis method for submillimeter long vertically aligned singlewalled carbon nanotubes by no-flow alcohol catalytic chemical vapor deposition. Jpn J Appl Phys, 47, 1982 (2008). http://dx.doi. org/10.1143/JJAP.47.1982.
  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi. org/10.1126/science.1102896.
  3. Gaim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  4. Rocha CG, Rummeli MH, Ibrahim I, Sevincli H, Borrnert F, Kunstmamn J, Bachmatiuk A, Potschke M, Li W, Makharza SAM, Roche S, Buchner B, Cuniberti G. Tailoring the physical properties of graphene. In: Choi W, Lee JW, eds. Graphene: synthesis and applications. Nanomaterials and their applications, CRC Press, Boca Raton, 1 (2012).
  5. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). http://dx.doi.org/10.1038/nnano.2008.215.
  6. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  7. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science. 1171245.
  8. Lu X, Yu M, Huang H, Rouff RS. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10, 269 (1999). http:// dx.doi.org/10.1088/0957-4484/10/3/308.
  9. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenokov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B, 108, 19912 (2004). http:// dx.doi.org/10.1021/jp040650f.
  10. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  11. Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 11, 4642 (2011). http:// dx.doi.org/10.1021/nl202134z.
  12. Kim RH, Bae MH, Kim DG, Cheng H, Kim BH, Kim DH, Li M, Wu J, Du F, Kim HS, Kim S, Estrada D, Hong SW, Huang Y, Pop E, Rogers JA. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett, 11, 3881 (2011). http://dx.doi.org/10.1021/ nl202000u.
  13. Kang J, Kim H, Kim KK, Lee SK, Bae S, Ahn JH, Kim YJ, Choi JB, Hong BH. High-performance graphene-based transparent flexible heaters. Nano Lett, 11, 5154 (2011). http://dx.doi.org/10.1021/ nl202311v.
  14. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R, Ajayan PM. Ultrathin planar graphene supercapacitors. Nano Lett, 11, 1423 (2011). http://dx.doi.org/10.1021/nl200225j.
  15. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G. Superelastic graphene ripples for flexible strain sensors. ACS Nano, 5, 3645 (2011). http://dx.doi.org/10.1021/nn103523t.
  16. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi. org/10.1021/nl801457b.
  17. Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng LM. A high performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 96, 173104 (2010). http://dx.doi. org/10.1063/1.3413959.
  18. Jang BZ, Zhamu A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci, 43, 5092 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2.
  19. Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M, Shinohara H. A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl Phys Lett, 96, 263105 (2010). http://dx.doi.org/10.1063/1.3458797.
  20. Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly KF, Ajayan PM. Novel liquid precursor-based facile synthesis of large-area continuous, single and few-layer graphene films. Chem Mater, 22, 3457 (2010). http://dx.doi.org/10.1021/cm101027c.
  21. Dong X, Wang P, Fang W, Su CY, Chen YH, Li LJ, Huang W, Chen P. Growth of large-sized graphene thin-films by liquid precursor- based chemical vapor deposition under atmospheric pressure. Carbon, 49, 3672 (2011). http://dx.doi.org/10.1016/j.carbon. 2011.04.069.
  22. Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon, 49, 4204 (2011). http://dx.doi.org/10.1016/j. carbon.2011.05.054.
  23. Nair RR, Blake P, Grigorenko AN, Noboselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). http://dx.doi. org/10.1126/science.1156965.
  24. Li X, Cai W, Colombo L, Rouff RS, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.
  25. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS. Transfer of large-area graphene films for highperformance transparent conductive electrodes. Nano Lett, 9, 4359 (2009). http://dx.doi.org/10.1021/nl902623y.
  26. Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, Peng H, Liu Z. Defectlike structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano, 5, 4014 (2011). http://dx.doi.org/10.1021/nn200573v.
  27. Tuinstra F, Koenig JL, Raman spectrum of graphite. J Chem Phys, 53, 1126 (1970). http://dx.doi.org/10.1063/1.1674108.
  28. Nemanich RJ, Solin SA. First- and second-order Raman scatter ing from finite-size crystals of graphite. Phys Rev B, 20, 2 (1979). http://dx.doi.org/10.1103/PhysRevB.20.392.
  29. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401.
  30. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc, 133, 2816 (2011). http://dx.doi. org//10.1021/ja109793s.
  31. Dai H. Nanotube growth and characterization. In: Dresselhaus MS, Dresselhaus G, Avouris P, eds. Carbon nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics, Vol. 80, Springer, New York, 29 (2001). http://dx.doi.org/10.1007/3- 540-39947-X_3.

피인용 문헌

  1. Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes vol.5, pp.1, 2015, https://doi.org/10.1038/srep07747
  2. Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface vol.5, pp.1, 2015, https://doi.org/10.1038/srep11985
  3. Improving the graphene electrode performance in ultra-violet light emitting diode using silver nanowire networks vol.5, pp.2, 2015, https://doi.org/10.1364/OME.5.000314
  4. Graphene-GaN Schottky diodes vol.8, pp.4, 2015, https://doi.org/10.1007/s12274-014-0624-7
  5. Graphene–Carbon–Metal Composite Film for a Flexible Heat Sink vol.9, pp.46, 2017, https://doi.org/10.1021/acsami.7b11485
  6. Facile Synthesis of Highly Crystalline and Large Areal Hexagonal Boron Nitride from Borazine Oligomers vol.7, pp.1, 2017, https://doi.org/10.1038/srep40260