References
- Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Plenum Press, New York (1999).
- Bao L, Zang J, Li X. Flexible Zn2SnO4/MnO2 core/shell nanocable− carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett, 11, 1215 (2011). http://dx.doi. org/10.1021/nl104205s.
- Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). http://dx.doi.org/10.1038/nmat2297.
- Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). http:// dx.doi.org/10.1016/s0008-6223(00)00183-4.
- Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon, 45, 1757 (2007). http://dx.doi.org/10.1016/j. carbon.2007.05.004.
- Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi. org/10.5714/CL.2012.13.1.051.
-
Kim YH, Park SJ. Effect of pre-oxidation of pitch by
$H_{2}O_{2}$ on porosity of activated carbons. Appl Chem Eng, 21, 183 (2010). - Kong LB, Lang JW, Liu M, Luo YC, Kang L. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J Power Sources, 194, 1194 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.06.016.
- Seo MK, Saouab A, Park SJ. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites. Mater Sci Eng B, 167, 65 (2010). http://dx.doi.org/10.1016/j.mseb.2010.01.028.
- Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun, 11, 1158 (2009). http://dx.doi.org/10.1016/j.elecom.2009.03.036.
- Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett, 361, 35 (2002). http://dx.doi. org/10.1016/s0009-2614(02)00684-x.
- Lee H, Kim H, Cho MS, Choi J, Lee Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta, 56, 7460 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.113.
- Li J, Yang QM, Zhitomirsky I. Nickel foam-based manganese dioxide- carbon nanotube composite electrodes for electrochemical supercapacitors. J Power Sources, 185, 1569 (2008). http://dx.doi. org/10.1016/j.jpowsour.2008.07.057.
- Wei Z, Wan M, Lin T, Dai L. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv Mater, 15, 136 (2003). http://dx.doi.org/10.1002/adma.200390027.
- Qu S, Wang J, Kong J, Yang P, Chen G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta, 71, 1096 (2007). http://dx.doi.org/10.1016/j.talanta. 2006.06.003.
- Park SK, Park SJ, Kim S. Preparation and capacitance behaviors of cobalt oxide/ graphene composites. Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.130.
- Tao K, Dou H, Sun K. Interfacial coprecipitation to prepare magnetite nanoparticles: concentration and temperature dependence. Colloids Surf Physicochem Eng Aspects, 320, 115 (2008). http:// dx.doi.org/10.1016/j.colsurfa.2008.01.051.
- Zheng Y, Zhang M, Gao P. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors. Mater Res Bull, 42, 1740 (2007). http:// dx.doi.org/10.1016/j.materresbull.2006.11.022.
- Li Y, Tang L, Li J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun, 11, 846 (2009). http://dx.doi.org/10.1016/j.elecom. 2009.02.009.
- Rezaul Karim M, Lee CJ, Sarwaruddin Chowdhury AM, Nahar N, Lee MS. Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett, 61, 1688 (2007). http://dx.doi. org/10.1016/j.matlet.2006.07.100.
- Wu NL, Wang SY, Han CY, Wu DS, Shiue LR. Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources, 113, 173 (2003). http://dx.doi.org/10.1016/s0378-7753(02)00482-2.
- Kim DW, Rhee KY, Park SJ. Synthesis of activated carbon nanotube/ copper oxide composites and their electrochemical performance. J Alloys Compd, 530, 6 (2012). http://dx.doi.org/10.1016/j. jallcom.2012.02.157.
Cited by
- Can Faradaic Processes in Residual Iron Catalyst Help Overcome Intrinsic EDLC Limits of Carbon Nanotubes? vol.118, pp.46, 2014, https://doi.org/10.1021/jp5097184
- Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model vol.10, pp.6, 2015, https://doi.org/10.2217/nnm.14.145
- Nitrogen Modified-Reduced Graphene Oxide Supports for Catalysts for Fuel Cells and Their Electrocatalytic Activity vol.161, pp.4, 2014, https://doi.org/10.1149/2.076404jes
- Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications vol.8, pp.4, 2018, https://doi.org/10.3390/nano8040190
- Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to it in Recent Studies pp.15278999, 2018, https://doi.org/10.1002/tcr.201800112