DOI QR코드

DOI QR Code

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Received : 2012.04.11
  • Accepted : 2012.05.21
  • Published : 2012.07.31

Abstract

In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

Keywords

References

  1. Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Plenum Press, New York (1999).
  2. Bao L, Zang J, Li X. Flexible Zn2SnO4/MnO2 core/shell nanocable− carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett, 11, 1215 (2011). http://dx.doi. org/10.1021/nl104205s.
  3. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). http://dx.doi.org/10.1038/nmat2297.
  4. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). http:// dx.doi.org/10.1016/s0008-6223(00)00183-4.
  5. Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon, 45, 1757 (2007). http://dx.doi.org/10.1016/j. carbon.2007.05.004.
  6. Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi. org/10.5714/CL.2012.13.1.051.
  7. Kim YH, Park SJ. Effect of pre-oxidation of pitch by $H_{2}O_{2}$ on porosity of activated carbons. Appl Chem Eng, 21, 183 (2010).
  8. Kong LB, Lang JW, Liu M, Luo YC, Kang L. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J Power Sources, 194, 1194 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.06.016.
  9. Seo MK, Saouab A, Park SJ. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites. Mater Sci Eng B, 167, 65 (2010). http://dx.doi.org/10.1016/j.mseb.2010.01.028.
  10. Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun, 11, 1158 (2009). http://dx.doi.org/10.1016/j.elecom.2009.03.036.
  11. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett, 361, 35 (2002). http://dx.doi. org/10.1016/s0009-2614(02)00684-x.
  12. Lee H, Kim H, Cho MS, Choi J, Lee Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta, 56, 7460 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.113.
  13. Li J, Yang QM, Zhitomirsky I. Nickel foam-based manganese dioxide- carbon nanotube composite electrodes for electrochemical supercapacitors. J Power Sources, 185, 1569 (2008). http://dx.doi. org/10.1016/j.jpowsour.2008.07.057.
  14. Wei Z, Wan M, Lin T, Dai L. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv Mater, 15, 136 (2003). http://dx.doi.org/10.1002/adma.200390027.
  15. Qu S, Wang J, Kong J, Yang P, Chen G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta, 71, 1096 (2007). http://dx.doi.org/10.1016/j.talanta. 2006.06.003.
  16. Park SK, Park SJ, Kim S. Preparation and capacitance behaviors of cobalt oxide/ graphene composites. Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.130.
  17. Tao K, Dou H, Sun K. Interfacial coprecipitation to prepare magnetite nanoparticles: concentration and temperature dependence. Colloids Surf Physicochem Eng Aspects, 320, 115 (2008). http:// dx.doi.org/10.1016/j.colsurfa.2008.01.051.
  18. Zheng Y, Zhang M, Gao P. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors. Mater Res Bull, 42, 1740 (2007). http:// dx.doi.org/10.1016/j.materresbull.2006.11.022.
  19. Li Y, Tang L, Li J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun, 11, 846 (2009). http://dx.doi.org/10.1016/j.elecom. 2009.02.009.
  20. Rezaul Karim M, Lee CJ, Sarwaruddin Chowdhury AM, Nahar N, Lee MS. Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett, 61, 1688 (2007). http://dx.doi. org/10.1016/j.matlet.2006.07.100.
  21. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR. Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources, 113, 173 (2003). http://dx.doi.org/10.1016/s0378-7753(02)00482-2.
  22. Kim DW, Rhee KY, Park SJ. Synthesis of activated carbon nanotube/ copper oxide composites and their electrochemical performance. J Alloys Compd, 530, 6 (2012). http://dx.doi.org/10.1016/j. jallcom.2012.02.157.

Cited by

  1. Can Faradaic Processes in Residual Iron Catalyst Help Overcome Intrinsic EDLC Limits of Carbon Nanotubes? vol.118, pp.46, 2014, https://doi.org/10.1021/jp5097184
  2. Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model vol.10, pp.6, 2015, https://doi.org/10.2217/nnm.14.145
  3. Nitrogen Modified-Reduced Graphene Oxide Supports for Catalysts for Fuel Cells and Their Electrocatalytic Activity vol.161, pp.4, 2014, https://doi.org/10.1149/2.076404jes
  4. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications vol.8, pp.4, 2018, https://doi.org/10.3390/nano8040190
  5. Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to it in Recent Studies pp.15278999, 2018, https://doi.org/10.1002/tcr.201800112