방향성 입자를 이용한 실시간 변형 및 파괴 시뮬레이션

Real-Time Simulation of Deformation and Fracture with Oriented Particles

  • 투고 : 2012.11.23
  • 심사 : 2012.11.29
  • 발행 : 2012.12.01

초록

컴퓨터 그래픽스 분야에서 변형 및 파괴 시뮬레이션은 매우 중요한 기법으로 영화 및 게임 등에서 그 응용 범위가 매우 넓다. 본 논문에서는 방향성 입자를 이용한 고체 시뮬레이션 기법[1]을 확장하여 과도한 변형에 의한 파괴 현상을 실시간에 안정적으로 근사할 수 있는 실용적인 기법을 제안한다. 제안된 기법은 방향성 입자 집합의 최적 회전을 엄밀히 계산함으로써 순수 신축을 정확히 얻을 수 있으며 이를 이용하여 파괴 현상을 손쉽게 정형화할 수 있다. 본 논문의 실험에서는 대규모 모델의 변형 및 파괴 시뮬레이션도 실시간에 수행되었다.

Simulation of deformation and fracture is one of the most important physics-based techniques in film production and real-time applications such as computer games. This paper proposes a practical approach to real-time deformation and fracturing. We adopt solid simulation with oriented particles [1] to simulate large deformation robustly, and develop a fracturing scheme to accommodate material failure when excessively stretched or compressed. The proposed method decomposes linear deformation into optimal rotation and pure stretching precisely in shape matching with oriented particles so that fracturing criteria can be easily formulated in terms of stretching. Experimental results show that the proposed method runs in real-time even for large meshes and it can simulate large deformation and fracturing.

키워드

과제정보

연구 과제번호 : e-Enetertainment를 위한 실시간 물리 시뮬레이션 기술 개발

연구 과제 주관 기관 : 광운대학교, 한국연구재단

참고문헌

  1. M. Muller and N. Chentanez, "Solid simulation with oriented particles," ACM Transactions on Graphics (Proc. SIGGRAPH 2011), vol. 30, no. 4, pp. 92:1-92:9, 2011.
  2. Z. Bao, J.-M. Hong, J. Teran, and R. Fedkiw, "Fracturing rigid materials," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 2, pp. 370-378, 2007. https://doi.org/10.1109/TVCG.2007.39
  3. G. Irving, J. Teran, and R. Fedkiw, "Invertible finite elements for robust simulation of large deformation," in Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, 2004, pp. 131-140.
  4. E. G. Parker and J. F. O'Brien, "Real-time deformation and fracture in a game environment," in Proc. ACM SIGGRAPH/ Eurographics Symp. Computer Animation, 2009, pp. 165-175.
  5. N. Molino, Z. Bao, and R. Fedkiw, "A virtual node algorithm for changing mesh topology during simulation," ACM Transactions on Graphics (Proc. SIGGRAPH 2004), vol. 23, no. 3, pp. 385-392, 2004. https://doi.org/10.1145/1015706.1015734
  6. J. F. O'Brien, A. W. Bargteil, and J. K. Hodgins, "Graphical modeling and animation of ductile fracture," ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2002), vol. 21, no. 3, pp. 291-294, 2002.
  7. J. F. O'Brien and J. K. Hodgins, "Graphical modeling and animation of brittle fracture," Computer Graphics (Proc. ACM SIGGRAPH '99), vol. 33, no. 4, pp. 137-146, 1999.
  8. M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O'Brien, "Dynamic local remeshing for elastoplastic simulation," ACM Transactions on Graphics (Proc. SIGGRAPH 2010), vol. 29, no. 4, pp. 49:1-49:11, 2010.
  9. M. Muller, B. Heidelberger, M. Teschner, and M. Gross, "Meshless deformations based on shape matching," ACM Transactions on Graphics (Proc. SIGGRAPH 2005), vol. 24, no. 3, pp. 471-478, 2005. https://doi.org/10.1145/1073204.1073216
  10. A. R. Rivers and D. L. James, "Fastlsm: Fast lattice shape matching for robust real-time deformation," ACM Transactions on Graphics (Proc. SIGGRAPH 2007), vol. 26, no. 3, pp. 82:1-82:6, 2007.
  11. J. Yu and G. Turk, "Reconstructing surfaces of particlebased fluids using anisotropic kernels," in Proc. ACM SIGGRAPH/ Eurographics Symp. Computer Animation, 2010, pp. 217-225.
  12. S. Gottschalk, M. C. Lin, and D. Manocha, "Obbtree: A hierarchical structure for rapid interference detection," Computer Graphics (Proc. ACM SIGGRAPH '96), vol. 30, pp. 171-180, 1996.