DOI QR코드

DOI QR Code

혼합군집분석 기법을 이용한 도로 교통량의 첨두율 산정

Calculation of the Peak-hour Ratio for Road Traffic Volumes using a Hybrid Clustering Technique

  • 김형주 (서울대학교 환경계획학과) ;
  • 장수은 (서울대학교 환경계획학과)
  • Kim, Hyung-Joo (Department of Environmental Planning, Seoul National University) ;
  • Chang, Justin S. (Department of Environmental Planning, Seoul National University)
  • 투고 : 2011.07.25
  • 심사 : 2011.12.02
  • 발행 : 2012.02.28

초록

하루 동안 발생하는 교통수요는 대부분 특정 시간대에 집중됨으로써 수요 및 편익 산정에 어려움을 초래한다. 따라서 보다 신뢰성 높은 결과를 산출하기 위해서는 시간대별 특성을 고려할 필요가 있다. 이를 위한 첨두/비첨두의 1시간 통행량으로 환산하는 방법으로는 직관적 방법, 경험적 방법, 통계적 방법 등이 있다. 본 연구에서는 통계적 방법의 일환인 혼합군집분석 기법을 적용하여 첨두/비첨두/심야시간에 대한 지속시간과 집중률을 산정한다. 한국건설기술연구원이 제공하는 2009년 전국 24시간 수시교통량 자료를 이용하였으며, 차종별 특성을 살펴보기 위해 승용차, 트럭, 전차종 등으로 나누어 분석을 실시하였다. 분석결과의 검증을 위해 한국도로공사의 TCS 통행시간 자료를 이용하였다. 검증결과 본 연구결과가 타 연구에 비해 비첨두/심야 시간에는 오차율이 낮으며, 첨두시에는 통행거리가 멀어질수록 오차율이 높아지는 결과를 보였다. 본 연구결과는 임의성을 배제할 수 있으며, 첨두율 추정치에 대한 신뢰성 검증을 수행할 수 있어 보다 안정적인 방법론이라 평가할 수 있을 것이다. 본 연구의 결과가 향후 교통수요 분석의 신뢰성 향상에 일조할 수 있기를 기대한다.

The majority of daily travel demands concentrate at particular time-periods, which causes the difficulties in the travel demand analysis and the corresponding benefit estimation. Thus, it is necessary to consider time-specific traffic characteristics to yield more reliable results. Traditionally, na$\ddot{i}$ve, heuristic, and statistical approaches have been applied to address the peak-hour ratio. In this study, a hybrid clustering model which is one of the statistical methods is applied to calculate the peak-hour ratio and its duration. The 2009 national 24-hour traffic data provided by the Korea institute of Construction Technology are used. The analysis is conducted dividing vehicle types into passenger cars and trucks. For the verification for the usefulness of the methodology, the toll collection system data by the Korea Express Corporation are collected. The result of the research shows lower errors during the off-peak hours and night times and increasing error ratios as the travel distance increases. Since the method proposed can reduce the arbitrariness of analysts and can accommodate the statistical significance test, the model could be considered as a more robust and stable methodology. It is hoped that the result of this paper could contribute to the enhancement of the reliability for the travel demand analysis.

키워드

참고문헌

  1. Chung, S., S. Kim, and J. Kim(2009), "The Korea Transport Institute", Transportation Research, Vol.16, No.3, The Korea Transport Institute, pp.41-50.
  2. DO, Myungsik.LEE, Hyang Mee.NAMKOONG, Seong(2008), "Outlier Filtering and Missing Data Imputation Algorithm using TCS Data", Journal of Korean Society of Transportation, Vol.26, No.4, Korean Society of Transportation, pp.241-250.
  3. Huh, M., K. Song, and D. Kang(2002), "Implementation and Efficiency Comparison of Clustering Algorithms", The Korean Journal of Applied Statistics, Vol.10, SungKyunKwan University Research Institute of Applied Statistics, pp.92-106.
  4. Hair J. F., R. E. Anderson, and R. L. Tatham(1987), "Multivariate Data Analysis with Readings", Macmillan, pp.149-161.
  5. Korea Development Institute(2008), "The study on revision and supplement of standard guideline for preliminary feasibility study on road and railroad projects(the 5th edition)".
  6. Kaufman, L., P. J. Rousseeuw(1990), "Finding Groups in Data: An Introduction to Cluster Analysis", Wiley Series in Probability and Mathematical Statistics.
  7. Lee, H., S. Namkoong(2009), "A Development of Preprocessing Models of Toll Collection System Data for Travel Time Estimation", The Journal of The Korea Institute of Intelligent Transport Systems, Vol.8, No.5, Intelligent Transport Systems, pp.1-11.
  8. Ministry of Land, Transport and Maritime Affairs(2009), "Guideline for investment assessment of transport facilities(the 3rd edition)".
  9. Metropolitan Transportation Authority(2007), "2006 Seoul Metropolitan Household Travel Survey Data", Metropolitan Transportation Authority, Seoul, Incheon, Gyeonggi-do.
  10. MacQueen, J.(1967), "Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability", Vol.1, pp.281-297.
  11. Park, B., P. Santra, I. Yun, D. Lee(2004), "Optimization Time-of-Day Breakpoints for Better Traffic Signal Control", Transportation Research Record, No.1867, pp.217-223.
  12. Seoul(2003), "2002 Seoul Household Travel Survey Data", Seoul.
  13. SAS Institute Inc(1988), "SAS/STAT User's Guide: Release 6.03 edition".
  14. Sung, H., I. Yun, M. Park, C. Kim(2009), "Analysis of Hourly Variation for the Highway Traffics in Korea", Transportation Research, Vol.16, No.2, The Korea Transport Institute, pp.1-11.
  15. Smith, B. L., W. T. Scherer, and T. A. Hauser(2001), "Data-mining tools for the support of signal-timing plan development", Transportation Research Record: Journal of the Transportation Research Board, No.1768, pp.141-147.
  16. Smith, B. L., W. T. Scherer, T. A. Hauser, B. Park(2002), "Data-Driven Methodology for Signal Timing Plan Development: A Computational Approach", Computer-Aided Civil and Infrastructure Engineering, Vol.17, Issue.6, pp.387-395. https://doi.org/10.1111/1467-8667.00285
  17. The Korea Transport Institute(2010), "The study on revision of entire guideline for railroad investment assessment", Korea Rail Network Authority.
  18. The Highways Agency, The Scottish Office Development Department, The Welsh Office, The Department of the Environment (1997), "Design Manual for Roads and Bridges", Vol.12, Traffic Appraisal of Roads Schemes.
  19. Transportation Research Board(2007), "Metropolitan Travel Forecasting", Current State of the Practice.
  20. Wang, X., W. Cottrell, and S. Mu(2005), "Using K-means clustering to identify time-of-day break points for traffic signal timing plans", Proc. 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, pp.519-524.

피인용 문헌

  1. Calculation of the Peak-hour Ratio at Urban Railway Stations Reflecting Passenger Demand Pattern and Land Use Inventory - A Case of Seoul - vol.33, pp.4, 2013, https://doi.org/10.12652/Ksce.2013.33.4.1581
  2. 도로제설 이력자료 기반 제설 인프라 분석 vol.19, pp.3, 2017, https://doi.org/10.7855/ijhe.2017.19.3.083