DOI QR코드

DOI QR Code

Thermal Properties of Poly(trimethylene terephthalate-co-trimethylene isophthalate)s

폴리(트리메틸렌 테레프탈레이트-co-트리메틸렌 이소프탈레이트)의 열적 특성

  • Park, Sang Wook (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 박상욱 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2012.09.07
  • Accepted : 2012.10.08
  • Published : 2012.10.31

Abstract

Poly(trimethylene terephthalate-co-trimethylene isophthalate) [P(TT-co-TI)] copolymers with various contents of TI unit were synthesized via a two-step process of transesterification and polycondensation in a high pressure reactor in order to modify the thermal properties of PTT. Effects of TI content on the crystallization and other thermal properties were investigated by DSC, TGA, polarizing microscope, and synchrotron WAXD analysis. DSC analysis indicated that the cold crystallization temperature ($T_{cc}$) increased and glass transition temperature ($T_g$) and melting temperature ($T_m$) decreased with increasing TI content in the copolymer. The radial growth rate of PTT spherulite formed during the decrease of melt-crystallization as TI content increases. The growth and melting of the PTT crystallite were also analyzed in-situ by synchrotron WAXD patterns. A decrease in both $T_m$ during the heating process and melt-crystallization temperature ($T_{mc}$) during the cooling process for P(TT-co-TI)s were confirmed by WAXD patterns. Although the incorporation of the non-crystallizing comonomer unit of TI into the crystalline body of PTT reduced the crystallization rate of PTT, it did not affect the spherulite formation and crystal structure of PTT. Isothermal TGA analysis revealed that the activation energy for isothermal degradation with weight loss up to 10% of P(TT-co-TI)s was 200~240 kJ/mol, depending on the weight loss and TI content in the copolymer.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. R. Whinfield and J. T. Dickson, British Patent, 1941, 578,097.
  2. C. Hwo, T. Forschner, R. Lowtan, D. Gwyn, and B. Cristea, "Poly(trimethylene phthalates or naphthalate) and Copolymer: New Opportunities in Film and Packaging Applications", Future-Pak 98 Conference, Chicago, November, 1998.
  3. I. J. Desborough, I. H. Hall, and J. Z. Neisser, "The Structure of Poly(trimethylene terephthalate)", Polymer, 1979, 20, 545-552. https://doi.org/10.1016/0032-3861(79)90163-0
  4. R. M. Ho, K. Z. Ke, and M. Chen, “Crystal Structure and Banded Spherulite of Poly(trimethylene terephthalate)”, Macromolecules, 2000, 33, 7529-7537. https://doi.org/10.1021/ma000210w
  5. I. M. Ward, M. A. Wilding, and H. Brody “The Mechanical Properties and Structure of Poly(m-methylene terephthalate) Fibers”, J Polym Sci: Polym Phys Ed, 1976, 14, 263-274.
  6. F. C. Chiu, K. H. Huang, and J. C. Yang, “Miscibility and Thermal Properties of Melt-Mixed Poly(trimethylene terephthalate)/Amorphous Copolyester Blends”, J Polym Sci: Part B: Polym Phys, 2003, 41, 2264-2274.
  7. P. Supaphol, N. Dangseeyun, P. Thanomkiat, and M. Nithitanakul, "Thermal, Crystallization, Mechanical, and Rheological Characteristics of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Blends", J Polym Sci: Part B: Polym Phys, 2004, 42, 676-686. https://doi.org/10.1002/polb.10767
  8. C. Y. Ko, M. Chen, H. C. Wang, and I. M. Tseng, "Sequence Distribution, Crystallization and Melting Behavior of Poly (ethylene terephthalate-co-trimethylene terephthalate) Copolyesters", Polymer, 2005, 46, 8752-8762. https://doi.org/10.1016/j.polymer.2005.01.107
  9. M. Run, Y. Wang, C. Yao, and H. Zhao, "Isothermal- Crystallization Kinetics and Melting Behavior of Crystalline/ Crystalline Blends of Poly(trimethylene terephthalate) and Poly(ethylene 2,6-naphthalate)", J Appl Polym Sci, 2007, 103, 3316-3325. https://doi.org/10.1002/app.25254
  10. G. P. Karayannidis, I. D. Sideridou, D. N. Zamboulis, D. N. Bikiaris, and A. J. Sakalis, “Thermal Behavior and Tensile Properties of Poly(ethylene terephthalate-co-ethylene isophthalate)”, J Appl Polym Sci, 2000, 78, 200-207. https://doi.org/10.1002/1097-4628(20001003)78:1<200::AID-APP240>3.0.CO;2-R
  11. S. W. Lee, M. Ree, C. E. Park, Y. K. Jung, C. S. Park, Y. S. Jin, and D. C. Bae, “Synthesis and Non-isothermal Crystallization Behaviors of Poly(ethylene isophthalate-co-terephthalate)s, Polymer, 1999, 40, 7137-7146. https://doi.org/10.1016/S0032-3861(99)00119-6
  12. Y. Zhang and L. Gu, "Study of Non-iosthermal Crystallization Kinetics and Sequence Distribution in Poly(ethylene terephthalate-co-isophthalate)", Eur Polym J, 2000, 36, 759-765. https://doi.org/10.1016/S0014-3057(99)00136-6
  13. G. P. Karayannidis, D. N. Bikiaris, G. Z. Papageorgiou, and S. V. Pastras, “Synthesis and Characterization of Poly(ethylene terephthalate-co-isophthalate)s with Low Content of Iosphthalate Units”, J Appl Polym Sci, 2002, 86, 1931-1941. https://doi.org/10.1002/app.11103
  14. N. C. Karayiannis, V. G. Mavrantzas, and D. N. Theodorou, “Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate)”, Macromolecules, 2004, 37, 2978-2995. https://doi.org/10.1021/ma0352577
  15. Y. W. Seo, K. Pang, and Y. H. Kim, “Property Modulation of Poly(trimethylene terephthalate) by Incorporation of Nonlinear Isophthalate Units”, Macromol Mater Eng, 2006, 291, 1327-1337. https://doi.org/10.1002/mame.200600274
  16. T. Hatakeyama and F. X. Quinn, "Thermal Analysis : Fundamentals and Applications to Polymer Science", John Wiley & Sons, NY, 1994, pp.83-86.
  17. S. C. Lee, J. I. Han, Y. G. Jeong, and M. Kwon, “Strain Induced Enthalpy Relaxation in Poly(lactic acid)”, Macromolecules, 2010, 43, 25-28. https://doi.org/10.1021/ma901880a
  18. J. W. Lee, S. W. Lee, B. Lee, and M. Ree, “Synthesis and Non-Isothermal Crystallization Characteristics of Poly [(ethylene)-co-(trimethylene terephthalate)]s”, Macromol Chem Phys, 2001, 202, 3072-3080. https://doi.org/10.1002/1521-3935(20011001)202:15<3072::AID-MACP3072>3.0.CO;2-V
  19. L. H. Sperling, "Introduction to Physical Polymer Science", 3th ed., John Wiley & Sons, NY, 2001, pp.255-257.
  20. G. Z. Papageorgious and G. P. Karayannidis, "Multiple Melting Behaviour of Poly(ethylene-co-butylene naphthalene- 2,6-dicarboxylate)s", Polymer, 1999, 40, 5325-5332. https://doi.org/10.1016/S0032-3861(98)00746-0
  21. P. D. Hong, W. T. Chung, and C. F. Hsu, “Crystallization Kinetics and Morphology of Poly(trimethylene terephthalate)”, Polymer, 2002, 43, 3335-3343. https://doi.org/10.1016/S0032-3861(02)00163-5
  22. J. I. Lauritzen Jr. and J. D. Hoffman, “Extension of Theory of Growth of Chain-folded Polymer Crystals to Large Undercoolings”, J Appl Phys, 1973, 44, 4340-4352. https://doi.org/10.1063/1.1661962
  23. J. H. Flynn and L. A. Wall, “General Treatment of the Thermogravimetry of Polymers”, J Res Nat Bureau of Stds, 1966, 70A, 487-523. https://doi.org/10.6028/jres.070A.043