DOI QR코드

DOI QR Code

Hemicellulose Removal and Crystalline Structure Transition of Flax Fiber with Alkali Treatment

알칼리 처리에 따른 아마섬유의 헤미셀룰로스 제거와 결정구조 전이

  • Um, In Chul (Department of Bio-fibers and Materials Science, Kyungpook National University) ;
  • Kweon, Hae Yong (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Park, Young Hwan (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University)
  • 엄인철 (경북대학교 바이오섬유소재학과) ;
  • 권해용 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 박영환 (서울대학교 바이오시스템소재학부)
  • Received : 2012.08.07
  • Accepted : 2012.08.31
  • Published : 2012.10.31

Abstract

In this study, delignified flax fiber was treated with a NaOH aqueous solution. XRD diffractometry and FTIR spectroscopy were utilized to examine the structural transition of the alkali-treated flax fibers. Also, the effect of the hemicellulose removal on the structural change of flax fibers was discussed. XRD measurement revealed that the crystallinity of cellulose I increased at low NaOH concentration (3%) due to the elimination of amorphous hemicellulose. The structural transition from cellulose I to cellulose II occurred in a NaOH concentration range of 12~15%. Considering most hemicellulose in flax fiber is removed at 12% NaOH, it can be assumed that the presence of hemicellulose in flax fiber has a role in preventing the structural change of flax cellulose. IR absorbance ratios ($A_{1370cm}{^{-1}}/A_{2900cm}{^{-1}}$ and $A_{1430cm}{^{-1}}/A_{2900cm}{^{-1}}$) were utilized as a barometer of cellulose I crystalline exhibiting a similar result with the cellulose I crystallinity from XRD. Another absorbance ratio ($A_{895cm}{^{-1}}/A_{2900cm}{^{-1}}$) reflected the cellulose II crystalline showing almost the same trend as cellulose II crystallinity. On the whole, the total crystallinity of flax fiber was increased at low NaOH concentration (3%) and decreased at 12% due to the reduction of cellulose I content and increased again at 15% attributed to the formation of cellulose II content.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. Cassan and A. K. Bledzki, “Possibilities for Improving the Mechanical Properties of Jute/Epoxy Composites by Alkali Treatment of Fibres”, Compos Sci Technol, 1999, 59, 1303-1309. https://doi.org/10.1016/S0266-3538(98)00169-9
  2. D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, “Biodegradable Composites Based on l-polylactide and Jute Fibres”, Compos Sci Technol, 2003, 63, 1287-1296. https://doi.org/10.1016/S0266-3538(03)00100-3
  3. M. Baiardo, E. Zini, and M. Scandola, “Flax Fibre-polyester Composites”, Compos Pt A-Appl Sci Manuf, 2004, 35, 703-710. https://doi.org/10.1016/j.compositesa.2004.02.004
  4. I. V. D. Wyenberg, J. Ivens, A. D. Coster, B. Kino, E. Baetens, and I. Verpoest, “Influence of Processing and Chemical Treatment of Flax Fibres on Their Composites”, Compos Sci Technol, 2003, 63, 1241-1246. https://doi.org/10.1016/S0266-3538(03)00093-9
  5. M. S. Islam, K. L. Pickering, and N. J. Foreman, “Influence of Alkali Treatment on the Interfacial and Physicomechanical Properties of Industrial Hemp Fibre Reinforced Polylactic Acid Composites”, Compos Pt A-Appl Sci Manuf, 2010, 41, 596-603. https://doi.org/10.1016/j.compositesa.2010.01.006
  6. J. Gassan, I. Mildner, and A. K. Bledzki, “Influence of Fiber Structure Modification on the Mechanical Properties of Flax Fiber-epoxy Composites”, Mech Compos Mater, 1999, 35, 435-440. https://doi.org/10.1007/BF02329330
  7. H. Y. Kweon, Y. H. Park, and Y. S. Kong, "Structure and Physical Properties of Flax Fiber Treated with NaOH Solution", J Korea Fiber Soc, 1997, 34, 97-103.
  8. M. I. Voronova, S. N. Petrova, T. N. Lebedeva, O. N. Ivanova, A. N. Prusov, and A. G. Zakharov, “Structural Changes Induced in Flax Cellulose by Alkaline Treatment”, Russ J Appl Chem, 2003, 76, 1993-1997. https://doi.org/10.1023/B:RJAC.0000022455.25354.f0
  9. M. I. Voronova, S. N. Petrova, T. N. Lebedeva, O. N. Ivanova, A. N. Prusov, and A. G. Zakharov, "Changes in the Structure of Flax Cellulose Induced by Solutions of Lithium, Sodium, and Potassium Hydroxides", Fibre Chem, 2004, 36, 408-412. https://doi.org/10.1007/s10692-005-0027-3
  10. A. Jaehn, M. W. Schroeder, M. Fueting, K. Schenzei, and W. Diepenbrock, “Characterization of Alkali Treated Flax Fibres by Means of FT Raman Spectroscopy and Environmental Scanning Electron Microscopy”, Spectroc Acta Pt A-Molec Biomolec Spectr, 2002, 58, 2271-2279. https://doi.org/10.1016/S1386-1425(01)00697-7
  11. P. K. Chidambareswaran, S. Sreenivasan, and N. B. Patil, “Quantitative Analysis of Crystalline Phases in Chemically Treated Cotton Fibers”, Text Res J, 1987, 57, 219-222. https://doi.org/10.1177/004051758705700406
  12. C. Y. Liang in "Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose", R. T. O'Connor Ed., Marcel Dekker, Inc., New York, 1972, pp.59-91.
  13. C. Y. Liang, K. H. Bassett, E. A. McGinnes, and R. H. Marchessault, "Infrared Spectra of Crystalline Polysaccharides. VII. Thin Wood Sections", Tappi, 1960, 43, 1017-1024.
  14. C. Y. Liang and R. H. Marchessault, “Infrared Spectra of Crystalline Polysaccharides. I. Hydrogen Bonds in Native Celluloses”, J Polym Sci, 1959, 37, 385-395. https://doi.org/10.1002/pol.1959.1203713209
  15. J. Mann and H. J. Marrinan, "Crystalline Modifications of Cellulose. Part II. A Study with Plane-polarized Infrared Radiation", J Polym Sci, 1958, 32, 357-370. https://doi.org/10.1002/pol.1958.1203212507
  16. R. H. Marchessault and C. Y. Liang, "Infrared Spectra of Crystalline Polysaccharides. III. Mercerized Cellulose", J Polym Sci, 1960, 43, 71-84. https://doi.org/10.1002/pol.1960.1204314107
  17. C. Y. Liang and R. H. Marchessault, "Infrared Spectra of Crystalline Polysaccharides. II. Native Celluloses in the Region from 640 to 1700 $cm^{-1}$", J Polym Sci, 1959, 39, 269-278. https://doi.org/10.1002/pol.1959.1203913521
  18. M. Tsuboi, “Infrared Spectrum and Crystal Structure of Cellulose”, J Polym Sci, 1957, 25, 159-171. https://doi.org/10.1002/pol.1957.1202510904
  19. M. L. Nelson and R. T. O'connor, “Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Latticed Type. Part I. Spectra of Lattice Types I, II, III and of Amorphous Cellulose”, J Appl Polym Sci, 1964, 8, 1311-1324. https://doi.org/10.1002/app.1964.070080322
  20. M. L. Nelson and R. T. O'connor, “Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II”, J Appl Polym Sci, 1964, 8, 1325-1341. https://doi.org/10.1002/app.1964.070080323
  21. H. G. Higgins, C. M. Stewart, and K. J. Harringten, “Infrared Spectra of Cellulose and Related Polysaccharides”, J Polym Sci, 1961, 51, 59-84. https://doi.org/10.1002/pol.1961.1205115505

Cited by

  1. Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers vol.26, pp.2, 2013, https://doi.org/10.7852/ijie.2013.26.2.81