DOI QR코드

DOI QR Code

Enhancement of Solvent-Resistance by Forming Interpenetrating Network for High-Performance Polymer Field-Effect Transistors

고분자 네트워크 구조를 활용한 박막 트랜지스터의 용매안정성 향상에 관한 연구

  • Seo, Eunsuk (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Lee, Junghwi (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Min, Hong-Gi (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Lee, Hwa Sung (Department of Chemical & Biological Engineering, Hanbat National University)
  • 서은숙 (한밭대학교 화학생명공학과) ;
  • 이정휘 (한밭대학교 화학생명공학과) ;
  • 민홍기 (한밭대학교 화학생명공학과) ;
  • 이화성 (한밭대학교 화학생명공학과)
  • Received : 2012.04.30
  • Accepted : 2012.06.02
  • Published : 2012.06.30

Abstract

To enhance the solvent-resistance of polymer semiconductor film in organic field-effect transistors, bis(trichlorosily)hexane (BTH) as a cross-linkable agent was mixed with polymer semiconductors, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) and poly(3-hexylthiophene) (P3HT). The solvent-resistance was dramatically enhanced in both the F8T2/BTH and P3HT/BTH cases, even for the 1% addition of BTH. However, clear differences in the field-effect mobilities with increasing BTH-blend ratio were observed between the F8T2 and the P3HT cases. For the F8T2-FETs, the field-effect mobility was maintained by level of 90% at the 1% BTH-blend ratio, and decreased gradually above 1% blend ratio. In contrast, the field-effect mobilities of P3HT-FETs were dramatically decreased by blending the BTH, although the solvent-resistance was increased. This obvious difference is a result of the difference in crystalline properties between the amorphous F8T2 and the crystalline P3HT. This approach to improve the solvent-resistance of polymer films provides a facile method for the enhancement of the environmental stability in response to humidity and oxygen.

Keywords

Acknowledgement

Supported by : 한밭대학교

References

  1. C. N. Dellericerche, "A Bright Future for Organic Fieldeffect Transistors", Nature, 2006, 5, 605-613. https://doi.org/10.1038/nmat1699
  2. G. Malliaras and R. H. Friend, "An Organic Electronics Primer", Phys Today, 2005, 58, 53-58.
  3. S. R. Forrest, "The Path to Ubiquitous and Low-cost Organic Electronic Appliances on Plastic", Nature, 2004, 428, 911-918. https://doi.org/10.1038/nature02498
  4. C. Biswas and Y. H. Lee, "Graphene versus Carbon Nanotubes in Electronic Devices", Adv Funct Mater, 2011, 21, 3806-3826. https://doi.org/10.1002/adfm.201101241
  5. H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, "Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistors", J Am Chem Soc, 2008, 130, 10556-10564. https://doi.org/10.1021/ja800142t
  6. A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, and G. Wegner, "Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene)", Macromolecules 2006, 39, 2162-2171. https://doi.org/10.1021/ma0521349
  7. H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, and G. Xu, "Low-Temperature, Solution-Processed, High-Mobility Polymer Semiconductors for Thin-Film Transistors", J Am Chem Soc, 2007, 129, 4112-4113. https://doi.org/10.1021/ja067879o
  8. M. Kitamural and Y. Arakawaj, "Pentacene-based Organic Field-effect Transistors", J Phys: Condens Matt, 2008, 20, 184011-1-184011-16. https://doi.org/10.1088/0953-8984/20/18/184011
  9. S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, "Organic Semiconductors for Solution-Processable Field- Effect Transistors (OFETs)", Angew Chem Int Ed, 2008, 47, 4070-4098. https://doi.org/10.1002/anie.200701920
  10. D. A. da Silva Filho, E.-G. Kim, and J.-L. Bredas, "Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy", Adv Mater, 2005, 17, 1072-1076. https://doi.org/10.1002/adma.200401866
  11. B. de Boer and A. Facchetti, "Semiconducting Polymeric Materials", Polym Rev, 2008, 48, 423-431. https://doi.org/10.1080/15583720802231718
  12. Z. Bao, "Materials and Fabrication Needs for Low-cost Organic Transistor Circuits", Adv Mater, 2000, 12, 227-230. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<227::AID-ADMA227>3.0.CO;2-U
  13. Y. D. Park, J. A. Lim, Y. Jang, M. Hwang, H. S. Lee, H.-J. Lee, J.-B. Baek, and K. Cho, "Enhancement of the Fieldeffect Mobility of Poly(3-hexylthiophene)/functionalized Carbon Nanotube Hybrid Transistors", Organ Electro, 2008, 9, 317-322. https://doi.org/10.1016/j.orgel.2007.11.007
  14. J. A. Lim, J. H. Kim, L. Qiu, W. H. Lee, H. S. Lee, D. Kwak, and K. Cho, "Inkjet-printed Single-droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers", Adv Funct Mater, 2010, 20, 3292- 3297. https://doi.org/10.1002/adfm.201000528
  15. L. Kinder, J. Kanicki, J. Swensen, and P. Petroff, "Structural Ordering in F8T2 Polyfluorene Thin Film Transistors", Proc of SPIE, 2003, 5217, 35-42.
  16. J. Swensen, J. Kanicki, and A. J. Heeger, "Influence of Gate Dielectrics on the Electrical Properties of F8T2 Polyfluorene Thin-film Transistors", Proc of SPIE, 2003, 5217, 159-166.
  17. C. D. Dimitrakopoulos and D. J. Mascaro, "Organic Thin Film Transistors: A Review of Recent Advances", IBM J Res Dev, 2001, 45, 11-27. https://doi.org/10.1147/rd.451.0011
  18. L.-L. Chua, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, "Observation of Field-Effect Transistor Behavior at Self- Organized Interfaces", Adv Mater, 2004, 16, 1609-1615. https://doi.org/10.1002/adma.200400392
  19. S. H. Park, H. S. Lee, J.-D. Kim, D. W. Breiby, E. Kim, Y. D. Park, D. Y. Ryu, D. R. Lee, and J. H. Cho, "A Polymer Brush Organic Interlayer Improves the Overlying Pentacene Nanostructure and Organic Field-effect Transistor Performance", J Mater Chem, 2011, 21, 15580-15586. https://doi.org/10.1039/c1jm11607j
  20. Y. D. Park, J. H. Cho, D. H. Kim, Y. Jang, H. S. Lee, K. Ihm, T.-H. Kang, and K. Cho, "Energy-Level Alignment at Interfaces Between Gold and Poly(3-hexylthiphene) Films with Two Different Molecular Structures", Electrochem Solid-State Lett, 2006, 9, G317-G319. https://doi.org/10.1149/1.2337862