DOI QR코드

DOI QR Code

Antibacterial Properties Associated with Microorganisms Isolated from Arctic Lichens

북극 지의류 유래 미생물의 항균성

  • Kim, Mi-Kyeong (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Park, Hyun (Korea Polar Research Institute (KOPRI)) ;
  • Oh, Tae-Jin (Department of Pharmaceutical Engineering, SunMoon University)
  • Received : 2012.07.31
  • Accepted : 2012.10.06
  • Published : 2012.12.28

Abstract

A total of 5 different polar microorganisms were isolated from Arctic lichens and their bioactive compounds were extracted from cell culture using different solvents including acetone, water, chloroform, diethylether, ethanol, ethyl acetate, methanol, and petroleum ether. The antibacterial properties of the extracts were evaluated by disk diffusion tests and minimal inhibitory concentration tests against 6 bacterial pathogens; Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Enterobacter cloacae, Pseudomonas aeruginosa and Escherichia coli. Among the extraction samples, ethyl acetate extracts of Burkholderia sordidicola S5-$B^T$ (KOPRI 26644) showed the highest activity (inhibition zone, 7-10 mm; MIC value, 57.5-1000 ug/ml) against targeted bacteria. Among the various solvents used for extraction, chloroform extract exhibited the weakest, but still obvious, activity.

북극 지의류로부터 서로 다른 5종의 극지 미생물을 분리하였고, 그들의 생리활성 물질들은 아세톤, 물, 클로로포름, 다이에틸에테르, 에탄올, 에틸아세테이트, 메탄올 및 페트롤륨 에테르 등 다양한 용매를 이용하여 균 배양액으로부터 추출되었다. 이러한 추출물들의 항균성은 Staphylcoccus aureus, Bacillus subtilis, Micrococcus luteus, Enterobacter cloacae, Pseudomonas aeruginosa 및 Escherichia coli 등 6종의 병원체에 대한 디스크 확산법과 최소억제농도 측정법에 의해 조사되었다. 여러 추출 샘플 중, Burkholderia sordidicola S5-$B^T$ (KOPRI 26644) 유사미생물 종의 에틸아세테이트 추출물이 표적박테리아에 대한 높은 항균활성을 나타내었다(억제대, 7-10 mm; 최소억제농도, $57.5{\rightarrow}1000{\mu}g/ml$). 또한, 다양한 추출 용매 중, 클로로포름 추출물에서 약하지만 분명한 활성을 나타내었다.

Keywords

References

  1. Bates, S. T., G. W. G. Cropsey, G. Caporaso, R. Knight, and N. Fierer. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77: 1309-1314. https://doi.org/10.1128/AEM.02257-10
  2. Bauer, A. W., M. M. Kirby, J. C. Sherris, and M. Truck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496.
  3. Boustie, J. and M. Grube. 2005. Lichens-a promising source of bioactive secondary metabolites. Plant Genet. Resource 3: 273-287. https://doi.org/10.1079/PGR200572
  4. Cardinale, M., A. M. Puglia, and M. Grube. 2006. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol. Ecol. 57: 484-495. https://doi.org/10.1111/j.1574-6941.2006.00133.x
  5. Dayan, F. E. and J. G. Romagni. 2001. Lichens as a potential source of pesticides. Pestic Outlook 12: 229-232. https://doi.org/10.1039/b110543b
  6. Grube, M., M. Cardinale, J. V. de Castro, H. Muller, and G. Berg. 2009. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 3: 1105-1115. https://doi.org/10.1038/ismej.2009.63
  7. Hager, A., G. Brunauer, R. Turk, and E. Stocker-Worgotter. 2008. Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J. Chem. Ecol. 34: 113-120. https://doi.org/10.1007/s10886-007-9408-9
  8. Ingolfsdottir, K., G. A. C. Chung, V. G. Skulason, S. R. Gissurarson, and M. Vilhelmsdottir. 1998. Antimycobacterial activity of lichens metabolites in vitro. Eur. J. Pharm. Sci. 6: 141-144. https://doi.org/10.1016/S0928-0987(97)00078-X
  9. Lauterwein, M., M. Oethinger, K. Belsner, T. Peters, and R. Marre. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39: 2541-2543. https://doi.org/10.1128/AAC.39.11.2541
  10. Lawrey, J. D. 1989. Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. J. Bryol. 92: 326-328. https://doi.org/10.2307/3243401
  11. Molnar, K. and E. Farkas. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C. 65:157-173.
  12. Muller, K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 56: 9-16. https://doi.org/10.1007/s002530100684
  13. Oksanen, I. 2006. Ecological and biotechnological aspects of lichens. J. Microbial. Biotechnol. 73: 723-734. https://doi.org/10.1007/s00253-006-0611-3
  14. Rankovic, B., M. Misjic, and S. Sukdolak. 2007. Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa and Umbilicaria cylindrica. J. Microbiol. 76: 723-727. https://doi.org/10.1134/S0026261707060112
  15. Swenson, J. M., C. Thornsberry, and V. A. Silcox. 1982. Rapidly growing mycobacteria: testing of susceptibility to 34 antimicrobial agents by microdilution. Antimirob. Agent Chemother. 22: 186-192. https://doi.org/10.1128/AAC.22.2.186

Cited by

  1. Recent literature on lichens-230 vol.116, pp.3, 2012, https://doi.org/10.1639/0007-2745-116.3.316
  2. Antibacterial and antioxidant potential of polar microorganisms isolated from Antarctic lichen Psoroma sp. vol.8, pp.39, 2012, https://doi.org/10.5897/ajmr2014.6970
  3. 구름버섯(Coriolus versicolor)의 용매 추출물에 대한 항균 및 항산화 활성 조사 vol.44, pp.12, 2012, https://doi.org/10.3746/jkfn.2015.44.12.1793