DOI QR코드

DOI QR Code

Isolation and Characterization of a Feather Degrading Alkalophilic Streptomyces sp. TBG-S13A5 and its Keratinolytic Properties

  • 투고 : 2012.05.15
  • 심사 : 2012.10.02
  • 발행 : 2012.12.28

초록

Keratinases are of particular interest because of their action on insoluble keratins and generally on a broad range of protein substrates. Alkalophilic and neutrophilic actinomycete strains isolated from different soil samples, rich in keratinaceous substances were screened for keratinolytic activity. An alkalophilic isolate, TBG-S13A5, was found to possess good keratinolytic activity and was able to utilize feather as the sole carbon and nitrogen source. TBG-S13A5 exhibited an off-white aerial mass color with a rectus-flexibilis type of spore chain. The morphological, microscopical and biochemical characters were comparable with that of Streptomyces albidoflavus. Fatty acid methyl ester profiling (FAME) and 16S rDNA sequence analysis confirmed its identity as a strain of S. albidoflavus. Under submerged fermentation conditions, maximum protease production was recorded on the $5^{th}$ day of incubation at $30^{\circ}C$, using basal broth of pH 9.0 with 0.25% (w/v) white chicken feather. This strain could affect feather degradation when the initial pH was 8 and above and maximum protease production was recorded when the initial pH was around 10.5. The effectiveness of the crude enzyme in destaining and leather dehairing were also demonstrated.

키워드

참고문헌

  1. Agrahari, S. and N. Wadhwa. 2010. Degradation of chicken feather a poultry waste product by keratinolytic bacteria isolated from dumping site at Ghazipur poultry processing plant. Int. J. Poultry Sci. 9: 482-489. https://doi.org/10.3923/ijps.2010.482.489
  2. Anonymous. 2005. Interpreting Sherlock Reports. p. 4-1-4-9. In: MIS Operating Manual, Version 6.0, Sherlock${\circledR}$ Microbial Identification System, MIDI, Inc., Newark, DE. http:// www.midi-inc.com/media/pdfs/MIS-MANUAL-6.0.pdf.
  3. Bascaran, V., C. Hardisson, and A.F . Brana. 1990. Regulation of extracellular protease production in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 34: 208-213. https://doi.org/10.1007/BF00166782
  4. Bressollier, P., F. Letourneau, M. Urdaci, and B. Verneuil. 1999. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570-2576.
  5. Cai, C. and X. Zheng. 2009. Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J. Ind. Microbiol. Biotechnol. 36: 875-883. https://doi.org/10.1007/s10295-009-0565-4
  6. Chakrabarti, T. 1998. Actinomycetes-Isolation, Screening, Identification and Gene cloning p.94. In: Streptomyces-Laboratory Manual, MTCC, Institute of Microbial Technology, Chandigarh.
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783-791. https://doi.org/10.2307/2408678
  8. Foroughi, F., T. Keshavarz, and C. S. Evans. 2006. Specificities of proteases for use in leather manufacture. J. chem. Technol. Biotechnol. 81: 257-261. https://doi.org/10.1002/jctb.1367
  9. Giongo, J.L., F. S. Lucas, F. Casarin, P. Heeb, and A. Brandelli. 2007. Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World. J. Microbiol. Biotechnol. 23: 375-382. https://doi.org/10.1007/s11274-006-9234-1
  10. Gupta, R. and P. Ramnani. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21-33 https://doi.org/10.1007/s00253-005-0239-8
  11. Hain, T., N. Ward-Rainey, R. M. Kroppenstedt, E. Stackebrandt, and F.A. Rainey. 1997. Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int. J. Syst. Bacteriol. 47: 202-206 https://doi.org/10.1099/00207713-47-1-202
  12. Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules. pp. 21-132. In: H.N. Munro (ed.), Mammalian Protein Metabolism, Academic Press, New York.
  13. Kunert, J. 2000. Physiology of Keratinophilic Fungi. pp. 77-85. In: Kushwaha, R. K. S. and J. Guarro (eds.), Biology of Dermatophytes and Other Keratinophilic. Bilbao: Revista Iberoamericana de Micología.
  14. Kuster, E. and S. T. Williams. 1964. Selection media for isolation of Streptomycetes. Nature (London). 202: 928-929 https://doi.org/10.1038/202928a0
  15. 15. Letourneau, F., V. Soussotte, P. Bressollier, P. Branland, and B. Verneuil. 1998. Keratinolytic activity of Streptomyces sp. S.K.1-02: a new isolated strain. Lett. Appl. Microbiol. 26: 77- 80. https://doi.org/10.1046/j.1472-765X.1998.00281.x
  16. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 267-275.
  17. Macedo, A. J., W. O. B. da Silva, R. Gava, D. Driemeier, J. A. P. Henriques, and C. Termignoni. 2005. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl. Environ. Microbiol. 71: 594-596 https://doi.org/10.1128/AEM.71.1.594-596.2005
  18. Makinson, K. R. 1979. Shrink proofing of wool. p. 373. Marcel Dekker Inc., New York, Basel.
  19. Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acids. Res. 8: 4321-4325. https://doi.org/10.1093/nar/8.19.4321
  20. Nonomura, H. 1974. Key for classification and identification of 458 species of the Streptomyces included in ISP. J. Ferment. Technol. 52: 78-92.
  21. Onifade, A. A., N. A. Al-Sane, A. A. Al-Musallam, and S. Al-Zarban. 1998. Potentials for biotechnological applications of keratin-degrading microorganisms and their enzyme for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66: 1-11. https://doi.org/10.1016/S0960-8524(98)00033-9
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  23. Sarath, G., R. S. De La Motte, and F. W. Wagner. 1989. Protease assay methods. pp. 25-55. In: Beynon, R. J. and J. S. Bond (eds.) Proteolytic Enzymes- A Practical Approach. IRL Press, Oxford.
  24. Scott, A. and W. A. Untereiner. 2004. Determination of keratin degradation by fungi using keratin azure. Med. Mycol. 42: 239-246. https://doi.org/10.1080/13693780310001644680
  25. Shirling, E. B. and D. Gottlieb. 1966. Methods for the Characterization of Streptomyces species. Intl. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
  26. Shirling, E. B. and D. Gottlieb. 1969. Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Intl. J. Syst. Bacteriol. 19: 391-512. https://doi.org/10.1099/00207713-19-4-391
  27. Tatineni, R., K. K. Doddapaneni, R. C. Potumarthi, and L. N Mangamoori. 2007. Optimization of keratinase production and enzyme activity using response surface methodology with Streptomyces sp.7. Appl. Biochem. Biotechnol. 141(2- 3): 187-201.
  28. Weisburg, W. G., M. Barns, D. A. Pelletier, and D. J. Lane. 1991. Ribosomal DNA amplification for phylogenic study. J. Bacteriol. 173: 697-703.
  29. Williams, S. T., M. Goodfellow, and G. Alderson. 1989. Genus Streptomyces Waksman and Henrici 1943, 339AL. pp. 2453-2492. In: Williams, M., E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Determinative Bacteriology, vol. 4, S. T. Baltimore: Williams & Willkins.
  30. Xie, F., Y. Chao, X. Yang, J. Yang, Z. Xue, Y.Luo, and S. Qian. 2010. Purification and characterization of four keratinases produced by Streptomyces sp. strain 16 in native human foot skin medium. Bioresour. Technol. 101: 344-350. https://doi.org/10.1016/j.biortech.2009.08.026
  31. Yadav, A. K., S. Vardhan, M. S. Yandigeri, A. K. Srivastava, and D. K. Arora. 2011. Optimization of keratin degrading enzyme from thermophilic strain of Streptomyces sclerotialus. Res. J. Microbiol. 6: 693-705. https://doi.org/10.3923/jm.2011.693.705