References
- Arenskotter, M., D. Broker, and A. Steinbuchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004
- Armstrong, G. A. and J. E. Hearst. 1996. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 10: 228-237.
- Banh, Q., M. Arenskotter, D. Broker, and A. Steinbüchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004
- Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485. https://doi.org/10.1126/science.1066771
- Broke, D., M. Arenskotter, A. Legatzki, D. H. Nies, and A. Steinbuchel. 2004. Characterization of the 101-kilobase-pair megaplasmid pkB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J. Bacteriol. 186: 212-225. https://doi.org/10.1128/JB.186.1.212-225.2004
- Browning, D. F., D. E. Whitworth, and D. A. Hodgson. 2003. Light-induced carotenogenesis in Myxococcus xanthus: Functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48: 237-251. https://doi.org/10.1046/j.1365-2958.2003.03431.x
- Chiao, M., K. B. Lam, and L. Lin. 2006. Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 16: 2547-2553. https://doi.org/10.1088/0960-1317/16/12/005
- Cogdell, R. J. and H. A. Frank. 1987. How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895: 63-79. https://doi.org/10.1016/S0304-4173(87)80008-3
- De Miguel, T., C. Sieiro, M. Poza, and T. G. Villa. 2000. Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int. Microbiol. 3: 107-111.
- Drzyzga, O., J. M. Navarro Llorens, L. Fernandez de las Heras, E. Garcia Fernandez, and J. Perera. 2009. Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int. J. Syst. Evol. Microbiol. 59: 1011-1015. https://doi.org/10.1099/ijs.0.005777-0
- Hiessl, S., J. Schuldes, A. Thurmer, T. Halbsguth, D. Broke, A. Angelov, et al. 2012. Involvement of two latex-cleaning proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2. Appl. Environ. Microbiol. 78: 2874-2887. https://doi.org/10.1128/AEM.07969-11
- Jagannadham, M. V., V. J. Rao, and S. Shivaji. 1991. The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: Purification, structure, and interaction with synthetic membrane. J. Bacteriol. 173: 7911-7917.
-
Jeon, B. Y., I. L. Jung, and D. H. Park. 2011. Enrichment of
$CO_2$ -fixing bacteria in cylinder-type electrochemical bioreactor with built-in anode compartment. J. Microbiol. Biotechnol. 21: 590-598. - Kakati, B. K. and D. Deka. 2007. Effect of resin matrix precursor on the properties of graphite composite bipolar plate for PEM fuel cell. Energy Fuels 21: 1681-1687. https://doi.org/10.1021/ef0603582
- Kim, S. B., R. Brown, C. Oldfield, S. C. Gilbert, and M. Goodfellow. 1999. Gordonia desulfuricans sp. nov., a benzothiophenedesulphurizing actinomycete. Int. J. Syst. Bacteriol. 49: 1845-1851. https://doi.org/10.1099/00207713-49-4-1845
- Kim, I. S., K. J. Chae, M. J. Choi, and W. Verstraete. 2008. Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 13: 51-65. https://doi.org/10.4491/eer.2008.13.2.051
- Kummer, C., P. Schumann, and E. Stackebrandt. 1999. Gordonia alkanivorans sp. nov. isolated from tar-contaminated soil. Int. J. Syst. Bacteriol. 49: 1513-1522. https://doi.org/10.1099/00207713-49-4-1513
- Lee, J. J., S. K. Rhee, and S. T. Lee. 2001. Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Appl. Environ. Microbiol. 67: 4342-4345. https://doi.org/10.1128/AEM.67.9.4342-4345.2001
- Lee, S. W., B. Y. Jeon, and D. H. Park. 2010. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell. Biotechnol. Lett. 32: 483-487. https://doi.org/10.1007/s10529-009-0184-1
- Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.
- Linos, A., A. Steinbuchel, C. Sproer, and R. M. Kroppenstedt. 1999. Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int. J. Syst. Bacteriol. 49: 1785-1791. https://doi.org/10.1099/00207713-49-4-1785
- Liu, H., S. Cheng, and B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39: 658-662. https://doi.org/10.1021/es048927c
- Lowy, D. A., L. M. Tender, J. G. Zeikus, D. H. Park, and D. R. Lovley. 2006. Harvesting energy from the marine sedimentwater interface II. Kinetic activity of anode materials. Biosens. Bioelectron. 21: 2058-2063. https://doi.org/10.1016/j.bios.2006.01.033
- Mathews, M. M. and W. R. Sistrom. 1959. Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184: 1892-1893. https://doi.org/10.1038/1841892a0
- Meckel, R. A. and A. S. Kester. 1980. Extractability of carotenoid pigments from non-photosynthetic bacteria with solvents and detergents: Implications for the location and binding of the pigments. J. Gen. Microbiol. 120: 111-116.
- Nelis, H. J. and A. P. De Leenheer. 1989. Profiling and quantitation of bacterial carotenoids by liquid chromatography and photodiode array detection. Appl. Environ. Microbiol. 55: 3065-3071.
- Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 18: 2403-2410.
- Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000
- Park, D. H., B. Y. Jeon, I. L. Jung, and B. Y. Kim. 2012. Characterization of light-reacting and carotenoid-producing Gordonia sp. Abstr. Int. Symp. Annu. Meet. Kor. Soc. Microbiol. Biotechnol. Busan, Korea, p. 389.
- Perry, K. L., T. A. Simonitch, K. J. Harrison-Lavoie, and S. T. Liu. 1986. Cloning and regulation of Erwinia herbicola pigment genes. J. Bacteriol. 168: 607-612.
- Stahl, W. and H. Sies. 2003. Antioxidant activity of carotenoids. Mol. Aspects Med. 24: 345-351. https://doi.org/10.1016/S0098-2997(03)00030-X
- Strik, D. P. B. T. B., R. A. Timmers, M. Helder, K. J. J. Steinbusch, H. V. M. Hamelers, and C. J. N. Buisman. 2011. Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29: 41-49. https://doi.org/10.1016/j.tibtech.2010.10.001
- Tian, B., Z. Xu, Z. Sun, J. Lin, and Y. Hua. 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta 1770: 902-911. https://doi.org/10.1016/j.bbagen.2007.01.016
- Tuveson, R. W., R. A. Larson, and J. Kagan. 1988. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J. Bacteriol. 170: 4675-4680.
- Vershnin, A. 1999. Biological function of carotenoid - diversity and evolution. Biofactors 10: 99-104. https://doi.org/10.1002/biof.5520100203
- Zhang, L., Q. Yang, X. Luo, C. Fang, Q. Zhang, and Y. Tang. 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch. Microbiol. 188: 411-419. https://doi.org/10.1007/s00203-007-0262-5
Cited by
- Influence of culture conditions towards optimal carotenoid production by Gordonia alkanivorans strain 1B vol.41, pp.2, 2012, https://doi.org/10.1007/s00449-017-1853-4
- Carotenoid Production by a Novel Isolate of Microbacterium paraoxydans vol.58, pp.1, 2012, https://doi.org/10.1007/s12088-017-0686-9
- An insight into the ecology, diversity and adaptations of Gordonia species vol.44, pp.4, 2018, https://doi.org/10.1080/1040841x.2017.1418286
- Differential transcriptional responses of carotenoid biosynthesis genes in the marine green alga Tetraselmis suecica exposed to redox and non-redox active metals vol.46, pp.1, 2012, https://doi.org/10.1007/s11033-018-04583-9
- Thermal‐ and Photo‐Induced Isomerization of All‐ E ‐ and Z ‐Isomer‐Rich Xanthophylls: Astaxanthin and Its Structurally‐Related Xanthophylls, Adonirubin vol.122, pp.5, 2012, https://doi.org/10.1002/ejlt.201900462