References
- Christiaens, B., S. Symoens, S. Vanderheyden, Y. Engelborghs, A. Joliot, A. Prochiantz, et al. 2002. Tryptophan fluorescence study of the interaction of penetration peptides with model membranes. Eur. J. Biochem. 269: 2918-2926. https://doi.org/10.1046/j.1432-1033.2002.02963.x
- CLSI. 2005. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, Fifteenth Informational Supplement, Approved Standard MS100-S15. Wayne, P.A.
- Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013. https://doi.org/10.1074/jbc.272.18.12008
- Dupuy, B. and M. Montagu. 1997. Spectral properties of a fluorescent probe, all-trans-1,6-diphenyl-1,3,5-hexatriene. Solvent and temperature effects. Analyst 122: 783-786. https://doi.org/10.1039/a701557g
- Epand, R. F., B. P. Mowery, S. E. Lee, S. S. Stahl, R. I. Lehrer, S. H. Gellman, and R. M. Epand. 2008. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J. Mol. Biol. 379: 38-50. https://doi.org/10.1016/j.jmb.2008.03.047
- Herranz, C., L. M. Cintas, P. E. Hernandez, G. N. Moll, and A. J. Driessen. 2001. Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob. Agents Chemother. 45: 901-904. https://doi.org/10.1128/AAC.45.3.901-904.2001
- Jin, Y., J. Hammer, M. Pate, Y. Zhang, F. Zhu, E. Zmuda, and J. Blazyk. 2005. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic betasheet and alpha-helical potentials. Antimicrob. Agents Chemother. 49: 4957-4964. https://doi.org/10.1128/AAC.49.12.4957-4964.2005
- Jung, H. J., Y. Park, W. S. Sung, B. K. Suh, J. Lee, K. S. Hahm, and D. G. Lee. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta 1768: 1400-1405. https://doi.org/10.1016/j.bbamem.2007.02.024
- Lee, J., C. Park, S. C. Park, E. R. Woo, Y. Park, K. S. Hahm, and D. G. Lee. 2009. Cell selectivity-membrane phospholipids relationship of the antimicrobial effects shown by pleurocidin enantiomeric peptides. J. Pept. Sci. 15: 601-606. https://doi.org/10.1002/psc.1157
- Lee, J. and D. G. Lee. 2010. Influence of the hydrophobic amino acids in the N- and C-terminal regions of pleurocidin on antifungal activity. J. Microbiol. Biotechnol. 20: 1192-1195. https://doi.org/10.4014/jmb.1004.04041
-
Ma, Q. Q., A. S. Shan, A. Dong, Y. P. Cao, Y. F. Lv, and L. Wang. 2011. The effects of Leu or Val residues on cell selectivity of
${\alpha}$ -helical peptides. Protein Pept. Lett. 18: 1112-1118. https://doi.org/10.2174/092986611797200968 - Merrifield, R. B. 1986. Solid phase synthesis. Science 232: 341-347. https://doi.org/10.1126/science.3961484
- Otvos, L. Jr. 2005. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11: 697-706. https://doi.org/10.1002/psc.698
- Ouberai, M., F. El Garch, A. Bussiere, M. Riou, D. Alsteens, L. Lins, et al. 2011. The Pseudomonas aeruginosa membranes: A target for a new amphiphilic aminoglycoside derivative? Biochim. Biophys. Acta 1808: 1716-1727. https://doi.org/10.1016/j.bbamem.2011.01.014
-
Park, S. C., M. H. Kim, M. A. Hossain, S. Y. Shin, Y. Kim, L. Stella, et al. 2008. Amphipathic
${\alpha}$ -helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta 1778: 229-241. https://doi.org/10.1016/j.bbamem.2007.09.020 - Picas, L., M. T. Montero, A. Morros, J. L. Vazquez-Ibar, and J. Hernandez-Borrell. 2010. Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli. Biochim. Biophys. Acta 1798: 291-296. https://doi.org/10.1016/j.bbamem.2009.06.024
- Ruissen, A. L. A., J. Groenink, E. J. Helmerhorst, E. Walgreen- Weterings, W. V. Hof, E. C. I. Veerman, and A. V. N. Amerongen. 2001. Effects of histatin 5 and derived peptides on Candida albicans. Biochem. J. 356: 361-368. https://doi.org/10.1042/0264-6021:3560361
- Sheppard, R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552. https://doi.org/10.1002/psc.479
- Sims, P. J., A. S. Waggoner, C. H. Wang, and J. F. Hoffman. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13: 3315-3330. https://doi.org/10.1021/bi00713a022
- Strøm, M. B., B. E. Haug, O. Rekdal, M. L. Skar, W. Stensen, and J. S. Svendsen. 2002. Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol. 80: 65-74. https://doi.org/10.1139/o01-236
- Sung, W. S., H. J. Jung, I. S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354.
- Sung, W. S., Y. Park, C. H. Choi, K. S. Hahm, and D. G. Lee. 2007. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumonia. Biochem. Biophys. Res. Commun. 363: 806-810. https://doi.org/10.1016/j.bbrc.2007.09.041
- Vincent, M., L. S. England, and J. T. Trevors. 2004. Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim. Biophys. Acta 1672: 131-134. https://doi.org/10.1016/j.bbagen.2004.03.005
- Ward, M., M. Sanchez, M. O. Elasri, and A. B. Lowe. 2006. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against Gram-positive and Gram-negative bacteria. J. Appl. Polym. Sci. 101: 1036-1041. https://doi.org/10.1002/app.23269
- Wimley, W. C. and S. H. White. 1996. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 10: 842-848.
- Yang, S. T., S. Y. Shin, K. S. Hahm, and J. I. Kim. 2006. Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim. Biophys. Acta 1758: 1580-1586. https://doi.org/10.1016/j.bbamem.2006.06.007
- Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
- Zhao, H. and P. K. Kinnunen. 2002. Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J. Biol. Chem. 277: 25170-25177. https://doi.org/10.1074/jbc.M203186200
- Zhu, W. L., K. S. Hahm, and S. Y. Shin. 2009. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15: 569-575. https://doi.org/10.1002/psc.1145
Cited by
- Anti-Microbial, Anti-Biofilm Activities and Cell Selectivity of the NRC-16 Peptide Derived from Witch Flounder, Glyptocephalus cynoglossus vol.11, pp.6, 2012, https://doi.org/10.3390/md11061836
- Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae) vol.29, pp.8, 2015, https://doi.org/10.1096/fj.14-269860
- Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria vol.17, pp.5, 2012, https://doi.org/10.3390/ijms17050785
- Potent Antibacterial Activity of Synthetic Peptides Designed from Salusin-β and HIV-1 Tat(49-57) vol.68, pp.8, 2012, https://doi.org/10.1248/cpb.c20-00209