DOI QR코드

DOI QR Code

Influence of the N- and C-Terminal Regions of Antimicrobial Peptide Pleurocidin on Antibacterial Activity

  • Cho, Jaeyong (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Hyemin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2012.05.18
  • Accepted : 2012.06.13
  • Published : 2012.10.28

Abstract

Pleurocidin, a 25-mer antimicrobial peptide, has been known to exhibit potent antibacterial activity. To investigate the functional roles in N- and C-terminal regions of pleurocidin on the antibacterial activity, we designed four truncated analogs. The antibacterial susceptibility testing showed that pleurocidin and its analogs exerted antibacterial effect against various bacterial strains and further possessed specific activity patterns corresponding with their hydrophobic scale [pleurocidin > Anal 3 (1-22) > Anal 1 (4-25) > Anal 4 (1-19) > Anal 2 (7-25)]. Fluorescence experiments using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 3,3'-dipropylthiadicarbocyanine iodide [$diSC_3(5)$] indicated that the differences in antibacterial activity of the peptides were caused by its membrane-active mechanisms including membrane disruption and depolarization. Blue shift in tryptophan fluorescence demonstrated that the decrease in net hydrophobicity attenuates the binding affinity of pleurocidin to interact with plasma membrane. Therefore, the present study suggests that hydrophobicity in the N- and C-terminal regions of pleurocidin plays a key role in its antibacterial activity.

Keywords

References

  1. Christiaens, B., S. Symoens, S. Vanderheyden, Y. Engelborghs, A. Joliot, A. Prochiantz, et al. 2002. Tryptophan fluorescence study of the interaction of penetration peptides with model membranes. Eur. J. Biochem. 269: 2918-2926. https://doi.org/10.1046/j.1432-1033.2002.02963.x
  2. CLSI. 2005. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, Fifteenth Informational Supplement, Approved Standard MS100-S15. Wayne, P.A.
  3. Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013. https://doi.org/10.1074/jbc.272.18.12008
  4. Dupuy, B. and M. Montagu. 1997. Spectral properties of a fluorescent probe, all-trans-1,6-diphenyl-1,3,5-hexatriene. Solvent and temperature effects. Analyst 122: 783-786. https://doi.org/10.1039/a701557g
  5. Epand, R. F., B. P. Mowery, S. E. Lee, S. S. Stahl, R. I. Lehrer, S. H. Gellman, and R. M. Epand. 2008. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J. Mol. Biol. 379: 38-50. https://doi.org/10.1016/j.jmb.2008.03.047
  6. Herranz, C., L. M. Cintas, P. E. Hernandez, G. N. Moll, and A. J. Driessen. 2001. Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob. Agents Chemother. 45: 901-904. https://doi.org/10.1128/AAC.45.3.901-904.2001
  7. Jin, Y., J. Hammer, M. Pate, Y. Zhang, F. Zhu, E. Zmuda, and J. Blazyk. 2005. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic betasheet and alpha-helical potentials. Antimicrob. Agents Chemother. 49: 4957-4964. https://doi.org/10.1128/AAC.49.12.4957-4964.2005
  8. Jung, H. J., Y. Park, W. S. Sung, B. K. Suh, J. Lee, K. S. Hahm, and D. G. Lee. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta 1768: 1400-1405. https://doi.org/10.1016/j.bbamem.2007.02.024
  9. Lee, J., C. Park, S. C. Park, E. R. Woo, Y. Park, K. S. Hahm, and D. G. Lee. 2009. Cell selectivity-membrane phospholipids relationship of the antimicrobial effects shown by pleurocidin enantiomeric peptides. J. Pept. Sci. 15: 601-606. https://doi.org/10.1002/psc.1157
  10. Lee, J. and D. G. Lee. 2010. Influence of the hydrophobic amino acids in the N- and C-terminal regions of pleurocidin on antifungal activity. J. Microbiol. Biotechnol. 20: 1192-1195. https://doi.org/10.4014/jmb.1004.04041
  11. Ma, Q. Q., A. S. Shan, A. Dong, Y. P. Cao, Y. F. Lv, and L. Wang. 2011. The effects of Leu or Val residues on cell selectivity of ${\alpha}$-helical peptides. Protein Pept. Lett. 18: 1112-1118. https://doi.org/10.2174/092986611797200968
  12. Merrifield, R. B. 1986. Solid phase synthesis. Science 232: 341-347. https://doi.org/10.1126/science.3961484
  13. Otvos, L. Jr. 2005. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11: 697-706. https://doi.org/10.1002/psc.698
  14. Ouberai, M., F. El Garch, A. Bussiere, M. Riou, D. Alsteens, L. Lins, et al. 2011. The Pseudomonas aeruginosa membranes: A target for a new amphiphilic aminoglycoside derivative? Biochim. Biophys. Acta 1808: 1716-1727. https://doi.org/10.1016/j.bbamem.2011.01.014
  15. Park, S. C., M. H. Kim, M. A. Hossain, S. Y. Shin, Y. Kim, L. Stella, et al. 2008. Amphipathic ${\alpha}$-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta 1778: 229-241. https://doi.org/10.1016/j.bbamem.2007.09.020
  16. Picas, L., M. T. Montero, A. Morros, J. L. Vazquez-Ibar, and J. Hernandez-Borrell. 2010. Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli. Biochim. Biophys. Acta 1798: 291-296. https://doi.org/10.1016/j.bbamem.2009.06.024
  17. Ruissen, A. L. A., J. Groenink, E. J. Helmerhorst, E. Walgreen- Weterings, W. V. Hof, E. C. I. Veerman, and A. V. N. Amerongen. 2001. Effects of histatin 5 and derived peptides on Candida albicans. Biochem. J. 356: 361-368. https://doi.org/10.1042/0264-6021:3560361
  18. Sheppard, R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552. https://doi.org/10.1002/psc.479
  19. Sims, P. J., A. S. Waggoner, C. H. Wang, and J. F. Hoffman. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13: 3315-3330. https://doi.org/10.1021/bi00713a022
  20. Strøm, M. B., B. E. Haug, O. Rekdal, M. L. Skar, W. Stensen, and J. S. Svendsen. 2002. Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol. 80: 65-74. https://doi.org/10.1139/o01-236
  21. Sung, W. S., H. J. Jung, I. S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354.
  22. Sung, W. S., Y. Park, C. H. Choi, K. S. Hahm, and D. G. Lee. 2007. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumonia. Biochem. Biophys. Res. Commun. 363: 806-810. https://doi.org/10.1016/j.bbrc.2007.09.041
  23. Vincent, M., L. S. England, and J. T. Trevors. 2004. Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim. Biophys. Acta 1672: 131-134. https://doi.org/10.1016/j.bbagen.2004.03.005
  24. Ward, M., M. Sanchez, M. O. Elasri, and A. B. Lowe. 2006. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against Gram-positive and Gram-negative bacteria. J. Appl. Polym. Sci. 101: 1036-1041. https://doi.org/10.1002/app.23269
  25. Wimley, W. C. and S. H. White. 1996. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 10: 842-848.
  26. Yang, S. T., S. Y. Shin, K. S. Hahm, and J. I. Kim. 2006. Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim. Biophys. Acta 1758: 1580-1586. https://doi.org/10.1016/j.bbamem.2006.06.007
  27. Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
  28. Zhao, H. and P. K. Kinnunen. 2002. Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J. Biol. Chem. 277: 25170-25177. https://doi.org/10.1074/jbc.M203186200
  29. Zhu, W. L., K. S. Hahm, and S. Y. Shin. 2009. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15: 569-575. https://doi.org/10.1002/psc.1145

Cited by

  1. Anti-Microbial, Anti-Biofilm Activities and Cell Selectivity of the NRC-16 Peptide Derived from Witch Flounder, Glyptocephalus cynoglossus vol.11, pp.6, 2012, https://doi.org/10.3390/md11061836
  2. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae) vol.29, pp.8, 2015, https://doi.org/10.1096/fj.14-269860
  3. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria vol.17, pp.5, 2012, https://doi.org/10.3390/ijms17050785
  4. Potent Antibacterial Activity of Synthetic Peptides Designed from Salusin-β and HIV-1 Tat(49-57) vol.68, pp.8, 2012, https://doi.org/10.1248/cpb.c20-00209