Supported Ionic Liquid Membrane Preparation for Carbon Dioxide Separation

이산화탄소 분리를 위한 이온성액체 지지분리막의 제조

  • Choi, Mi Young (Department of Chemical and Biomolecular Engineering Seoul National University of Technology & Science) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering Seoul National University of Technology & Science)
  • 최미영 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2012.08.27
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

The study is aiming to prepare supported ionic liquid membranes for carbon dioxide separation efficiently. The ionic liquid, [bmim][${PF_6}^-$] (1-butyl-3-methyl-imidazolium hexafluorophosphate) was fixed in the pores of PVDF micro-filtration membrane with a nominal pore size 0.1 ${\mu}m$. The permeabilities of $N_2$, $H_2$ and $CO_2$ gases through the prepared ionic liquid membrane were 0.075, 0.203 and 1.380 GPU, respectively. The selectivities of $CO_2/N_2$, $H_2/N_2$ were 14.2 and 2.69, respectively. Also, the supported ionic liquid membrane could be operated stably up to 2.0 bar with the immobilization of ionic liquid in the pores.

본 연구는 이산화탄소를 효율적으로 분리하기 위한 이온성액체 지지분리막 제조를 목적으로 한다. 공칭크기 0.1 ${\mu}m$ PVDF 정밀여과막에 이온성액체인 [bmim][${PF_6}^-$] (1-butyl-3-methylimidazolium hexafluorophosphate)를 분리막 세공내로 흡입시켜 고정화하였다. 제조된 이온성액체 지지막에 대한 $N_2$, $H_2$, $CO_2$ 기체의 투과도는 0.075, 0.203, 1.380 GPU로 측정되었으며 $CO_2/N_2$, $H_2/N_2$의 선택도는 각각 14.2와 2.69이었다. 또한 이온성액체 지지분리막은 이온성 액체가 운전압력 2.0 bar까지 세공 내에 고정되어 안정적으로 운전 가능하였다.

Keywords

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membrane Journal, 20, 267 (2010).
  2. J. P. Kim, B. Y. Yeom, and B. R. Min, "Techtrend for polymeric gas separation membranes", Polym. Sci. Tech., 16, 436 (2005).
  3. S. M. Woo, J. J. Choi, and S. Y. Nam, "Prepration of hydoxy polyimice membranes and their carbon dioxide permeation property", Membrane Journal, 22, 128 (2012).
  4. S. I. Jeon, Y. M. Jung, J. H. Park, and Y. T. Lee, "Hydrogen separation of $V_{99.8}B_{0.2}$ alloy membrane in water-Gas shift reaction", Membrane Journal, 22, 16 (2012).
  5. H. J. Lee, J. S. Lee, and H. S. Kim, "Applications of ionic liquids: The state of arts", Chem. Eng., 21, 129 (2010).
  6. J. Kumelan, A. P. Kamps, D. Tuma, and G. Maurer, "Solubility of CO in the ionic liquid [bmim][$PF_6$]", Fluid Phase Equilibria, 207, 228 (2005).
  7. P. Cserjesi, N. Nemestothy, A. Vass, Z. S. Csanadi, and K. Belafi-Bako, "Study on gas seperation by supported liquid membranes applying novel ionic liquids", Desalination, 245, 743 (2009). https://doi.org/10.1016/j.desal.2009.02.046
  8. L. A. Neves, J. G. Crespo, and I. M. Coelhoso, "Gas permeation studies in supported ionic liquid membranes", J. Membr. Sci., 357, 160 (2010). https://doi.org/10.1016/j.memsci.2010.04.016
  9. W. Zhao, G. He, F. Nie, L. Zhang, H. Feng, and H. Liu, "Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation", J. Membr. Sci., 411, 73 (2012).
  10. J. J. Close, K. Farmer, S. S. Moganty, and R. E. Baltus, "$CO_2/N_2$ Separations using nanoporous alumina- supported ionic liquid membranes: effect of the support on separation performance", J. Membr. Sci., 201, 390 (2012).
  11. B. C. Lee and I. H. Beak, NICE, 29, 184 (2011).
  12. http://ilthermo.boulder.nist.gov.