Evaluation of Morphology and Water Flux for Polysulfone Flat Sheet Membrane with Conditions of Coagulation Bath and Dope Solution

응고조와 도프조성에 따른 폴리술폰 평막의 모폴로지 및 수투과도 평가

  • Woo, Seung Moon (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Chung, Youn Suk (Puremem Co. Ltd.) ;
  • Nam, Sang Yong (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University)
  • 우승문 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단) ;
  • 정연석 ((주)퓨어멤) ;
  • 남상용 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단)
  • Received : 2012.08.21
  • Accepted : 2012.08.27
  • Published : 2012.08.31

Abstract

In this study, to research effect of coagulation bath and composition of dope solution, polysulfone flat sheet membrane was fabricated by phase inversion method. PEG and PVP were used as additive. Concentration of polymer and additive, composition of coagulation bath was controlled to prepare flat sheet membrane. And then the morphology and water flux of prepared membrane were measured by FE-SEM and water flux testing apparatus. The highest value of water flux was measured at the membrane prepared under a 15 wt% PSF, 25 wt% PEG conditions, and water as coagulation bath. The pure water flux of the membrane composed of PSf/PEG was drastically decreased with increasing amount of DMAc. We confirmed that change of amount in additive and composition in coagulation bath influence the morphology and water flux performance of the membrane.

본 연구에서는 응고조와 도프조성에 따른 투과특성을 알아보기 위해 첨가제로 PEG, PVP를 사용하였고, 상전이법을 이용하여 PSf 평막을 제조하였다. 고분자의 농도, 첨가제의 농도 그리고 응고조의 조성을 달리하여 제막하였다. 평막의 모폴로지와 수투과도를 각각 FE-SEM과 수투과 테스트 장치를 이용하여 측정하였다. 가장 높은 수투과도(986 L/mh)는 PSf 15 wt%, PEG 25 wt% 그리고 응고조로 물이 사용되었을 경우 나타났다. PSf/PEG조성일때 응고조에 DMAc의 함량이 증가할수록 순수투과도는 급격히 감소하였다. 그러한 결과 첨가제의 함량과 응고조의 조성의 변화가 모폴로지와 수투과 특성에 영향을 미치는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. E. C. Gregor, G. B. Tanny, E. Shchori, and Y. Kenigsberg, "SUNBEAM $PROCESS^{TM}$ microporous membranes; A high performance barrier for protective clothing", J. Coated Fabrics, 18, 26 (1988). https://doi.org/10.1177/152808378801800104
  2. V. D. Alves, B. Koroknai, K. Belafi-Bako, and I. M. Coelhoso, "Using membrane contactors for fruit juice concentration", Desalination, 162, 263 (2003).
  3. R. Nagel and T. Will, "Membrane processes for water treatment in the semiconductor industry", Ultrapure Water, 16, 35 (1999).
  4. M. H. Kim and J. Y. Park, "Membrane fouling control effect of periodic water-back-flushing in the tubular carbon ceramic ultrafiltration system for recycling paper wastwater", Membrane Journal, 11, 190 (2001).
  5. M. Mulder, "Basic principles of membrane technology", pp. 86-99, Kluwer Academic Publishers Netherlands (1991).
  6. W. Y. Jang and W. T. Lee, "Preparation of asymmetric polysulfone membrane by a wet phase inversion technique", Theories and applications of Chemical Engineering, 12, 1730 (2006).
  7. I. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, C. A. Smolders, and H. Strathmann, "Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers", J. Membr. Sci., 113, 361 (1996). https://doi.org/10.1016/0376-7388(95)00256-1
  8. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, "Effect of molecular weight PEG on membrane morphology and transport properties", J. Membr. Sci., 309, 209 (2008). https://doi.org/10.1016/j.memsci.2007.10.027
  9. Y. Ma, F. Shi, J. Ma, M. Wu, J. Zhang, and C. Gao, "Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes", Desalination, 272, 51 (2011). https://doi.org/10.1016/j.desal.2010.12.054
  10. H. Y. Hwang, D. J. Kim, W. J. Yim, and S. Y. Nam, "PES/SPAES blend membranes for nanofiltration : The effect of sulfonic acid groups and thermal treatmemt", Desalination, 289, 72 (2012). https://doi.org/10.1016/j.desal.2012.01.012
  11. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Kho, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation of properties of Chlorine-Resistance loose reverse osmosis hollow fiber membrane", Membrane Journal, 20, 304 (2010).
  12. J. Han, D. Yang, S. Zhang, X. Liu, Z. Zhang, and X. Jian, "Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane", J. Membr. Sci., 365, 311 (2010). https://doi.org/10.1016/j.memsci.2010.09.022
  13. J. Y. Lee, K. W. Lee, M. J. Han, and S. J. Park, "Preparation and characterization of polysulfone membranes using PVP as an additive", Membrane Journal, 22, 277 (2011).
  14. P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation", J. Membr. Sci., 117, 1 (1996). https://doi.org/10.1016/0376-7388(96)00088-9