DOI QR코드

DOI QR Code

Analysis of Suspended Solids Reduction by Vegetative Filter Strip for Cultivated Area Using Web GIS-Based VFSMOD

VFSMOD를 이용한 경작지의 고형물질 유출 저감효과

  • Ahn, Jae Hwan (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Yun, Sang Leen (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Kim, Seog Ku (Environmental Eng. Research Division, Korea Institute of Construction Technology) ;
  • Park, Youn Shik (Department of Agricultural Engineering, Kangwon National University) ;
  • Lim, Kyoung Jae (Department of Agricultural Engineering, Kangwon National University)
  • 안재환 (한국건설기술연구원 환경연구실) ;
  • 윤상린 (한국건설기술연구원 환경연구실) ;
  • 김석구 (한국건설기술연구원 환경연구실) ;
  • 박윤식 (강원대학교 지역건설공학과) ;
  • 임경재 (강원대학교 지역건설공학과)
  • Received : 2012.11.08
  • Accepted : 2012.12.07
  • Published : 2012.12.30

Abstract

The study was performed to simulate the reduction efficiency of suspended solids (SS) for cultivated land located at riverine area at the Namhan River and the Bukhan River watershed sites (site A, B, C) under the rainfall conditions using HUFF & SCS UH-based VFS Design module of Web GIS-based VFSMOD System. The study indicates that the field 5% sloped, located at Bukhan River watershed (site A), requires at least 0.5 m width of Vegetative Filter Strip (VFS) to reduce 70% of SS while the field 10% sloped requires the at least 1.0~1.5 m width of VFS to reduce 70% SS, under the condition 106.2 mm of rainfall event and bell pepper or corn of crops. Against the conditions 95.1 mm of rainfall event and sweet potato or soy bean of crops, the field 5% sloped, located at Namhan River watershed (site B) requires at least 0.5 m width of VFS to reduce 70% of SS while the field 10% sloped requires at least 1.0 m width of VFS to reduce 50% SS. The crops sweet potato and soy bean are cultivated in the site C, located at Namhan River watershed, 1 m of VFS is capable of 64.0% and 62.0% of SS reduction against 102.6 mm and 151.2 mm rainfall conditions respectively, for the 5% sloped field. The result supports that VFS is one of most potential methods to reduce SS from cultivated area, which is environment-friendly hydrologic structure. The VFS design, however, needs to be simulated before its installation in the field, the simulation needs to consider not only various characteristics of the field but also different conditions affecting the VFS, using a model capable to consider a lot of factors.

본 연구는 남한강과 북한강 유역 내 경작지 각 3개소(site A, B, C)를 대상으로 Web GIS-based VFSMOD System의 HUFF & SCS UH-based VFS Design Module을 적용하여 강우 시 경작지에서 유출되는 고형물질 유출저감을 모의하였다. 북한강 유역 내에 위치한 site A의 노지 밭의 토지경사도 5%, 강우 106.2 mm 조건에서 고추 및 옥수수를 재배할 경우, 70% 이상의 고형물질 유출저감 효율을 얻기 위해서는 초생대 폭이 최소 0.5 m 이상, 토지경사도 10%인 경우 70% 이상의 고형물질 유출저감 효율을 얻기 위해서는 초생대 폭이 최소 1.0~1.5 m 이상 유지해야 한다. 남한강 유역 내에 site B의 노지 밭의 토지경사도 5%, 강우량 95.1 mm 조건에서 토마토 및 땅콩을 재배할 경우, 70% 이상의 고형물질 유출저감을 위해서는 초생대의 폭이 최소 0.5 m, 토지경사도 10%인 경우 50% 이상의 고형물질 유출저감을 위해서는 최소 1.0 m 이상의 폭을 갖는 초생대를 설치해야 하는 것으로 나타났다. 남한강 유역 내에 site C의 노지 밭의 토지경사도 5%, 강우량 102.6 mm 조건에서 고구마 및 콩을 재배할 경우, 64.0% 이상의 고형물질 유출저감을 위해서는 초생대의 폭이 최소 1.0 m, 초생대를 설치해야 하는 것을 분석되었다. 또한, 동일한 조건에서 강우지속시간 2시간의 강우량을 151.2 mm로 증가시킬 경우, 62.0% 이상의 고형물질 유출저감을 위한 초생대의 최소 폭은 1.0 m 이상 설치해야 하는 것으로 분석되었다. 초생대 시설은 경작지와 같은 토지이용 시 친환경적인 고형물질 유출저감 방안으로 검토될 수 있으며, Web GIS-based VFSMOD System을 이용하여 다양한 토지특성과 강우 사상을 반영하여 적정한 규모의 초생대 설계가 가능할 것으로 분석되었다.

Keywords

References

  1. Interagency Joint, "Secondary comprehensive countermeasure of nonpoint source pollution ('12-'20)," (2012)
  2. Korea Institute of Construction Technology, "The Optimum Management Plans and Runoff Characteristics of Nonpoint Source for PalDang Watershed," (2000)
  3. National Resources Conservation Services (NRCS), http//www. nrcs.usda.gov/, (2011)
  4. T. A. Dillaha, R. B. Reneau., S. Mostaghimi, and D. Lee, "Vegetative filter strips of agricultural nonpoint source pollution control," Trans. ASAE, 32(2), 491-496(1989) https://doi.org/10.13031/2013.31031
  5. Chung, J. E., Chung, S. O., "Application of vegetative filter strip to control nonpoint source pollution," KCID J., 9(1), 103-111(2002)
  6. The Korea National Institute of Environmental Research, Han River Environment Research Center, "Investigation on the Cultivated Lands in River District and their Contribution of Water Pollution in Han River," (2008)
  7. Won, C. H., Shin, M. H., Choi, Y. H., Shin, J. Y., Park, W. J. and Choi, J. D., "Applications of Surface Cover Materials for Reduction of Soil Erosion," Korean Soc. Water Environ., 27(6), 848-854(2011)
  8. Munoz-Carpena, R., Parsons, J. E. and Gilliam, J. W., "Modeling hydrology and sediment transport in vegetative filter strips," J. Hydrol., 214, 111-129(1999) https://doi.org/10.1016/S0022-1694(98)00272-8
  9. Munoz-Carpena, R. and J. E. Parsons, "Vegetative Filter Strips Hydrology and Sediment Transport Modeling System," Model Document & User's Manual., (2005)
  10. Park, Y. S., Kim, J. G., Lim, K. J., Shin, Y. C., Ahn, J. H. and Kim, K. S., "Development of Web GIS VFSMOD System to Simulate Sediment Reduction Efficiency with Vegetative Filter Strip," The 2007 KSAE Annual Conference., p.115(2007)
  11. Park, Y. S., Jang, W. S. and Lim K. J., "Development and application of Web GIS-based vegetative filter strip evaluation system to reduce agricultural nonpoint pollution," Rurnal Res., 53(1), 56-67(2011)

Cited by

  1. Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.973
  2. Simulations of Reduction Effects on Runoff and Sediment for VFS Applications by Considering Uplands Characteristics in Iksan vol.56, pp.5, 2014, https://doi.org/10.5389/KSAE.2014.56.5.089