DOI QR코드

DOI QR Code

천연제올라이트와 제강전로슬래그를 이용한 세라믹 소재에 의한 산성폐수 내 중금속의 제거특성

Removal Characteristics of Heavy Metals in Acid Wastewater by Ceramics Using Natural Zeolite and Converter Slag

  • 김동희 (경성대학교 환경공학과) ;
  • 임수빈 (경성대학교 환경공학과)
  • Kim, Dong-Hee (Department of Environmental Engineering, Kyungsung University) ;
  • Yim, Soo-Bin (Department of Environmental Engineering, Kyungsung University)
  • 투고 : 2012.03.15
  • 심사 : 2012.04.26
  • 발행 : 2012.04.30

초록

천연제올라이트와 제강전로슬래그를 혼합 소성한 펠렛형 세라믹 소재(ZS 세라믹)를 이용하여 산성폐수 내 중금속의 제거특성 및 제거기작을 연구하고자 하였다. 세라믹 소재의 최적의 소성온도는 $600{\sim}800^{\circ}C$로 파악되었으며 소성시간에 따른 중금속 제거효율의 변화는 거의 나타나지 않았다. ZS 세라믹의 최적의 투여농도는 2~5%임을 알 수 있었고 최대의 중금속 제거능은 중금속별로 Al 84.7 mg/g, Cd 37.3 mg/g, Cr 81.7 mg/g, Cu 55.6 mg/g, Fe 57.2 mg/g, Mn 32.1 mg/g, Ni 38.0 mg/g, Pb 71.6 mg/g, Zn 46.3 mg/g로 나타났다. pH는 ZS 세라믹의 중금속 제거에 큰 영향을 미치는 인자로 파악되었다. ZS 세라믹에 의한 중금속의 제거 기작 실험을 통해 ZS 세라믹은 천연제올라이트에 의한 이온교환 및 흡착의 기작과 제강전로슬래그의 알칼리 공급에 의한 중화침전의 기작이 동시에 발생하는 중금속 처리제임을 확인 할 수 있었다.

This study was performed to investigate the removal characteristics and mechanism of heavy metals using pellet-type ceramics(ZS ceramics), in which natural zeolite was mixed and calcined with converter slag. The optimal calcination temperature range was measured to be $600{\sim}800^{\circ}C$. The calcination time had little effect on the removal of heavy metal in acid wastewater. The adequate dose of ceramics was shown to be 2~5% for removal of heavy metals in acid wastewater. The maximum removal capacity of ZS ceramics for heavy metals were observed to be Al 84.7 mg/g, Cd 37.3 mg/g, Cr 81.7 mg/g, Cu 55.6 mg/g, Fe 57.2 mg/g, Mn 32.1 mg/g, Ni 38.0 mg/g, Pb 71.6 mg/g, Zn 46.3 mg/g. The pH played a pivotal role in the removal of heavy metals by ZS ceramics. The analysis results of mechanism exhibited that the ZS ceramics could act as a multi-functional ceramics for removal of heavy metals in acid wastewater by adsorption, ion-exchange, or precipitation.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Lindsay, W. L., Chemical equilibria in soils, John Wiley and Sons, New York, Chichester (1979).
  2. Holan, Z. R. and Volesky, B., "Biosorption of lead and nickel by biomass of marine algae," Biotechnol. Bioeng., 43, 1001-1009(1994). https://doi.org/10.1002/bit.260431102
  3. Simmons, J., Ziemkiewicz, P. and Black, D.C., "Use of steel slag leach beds for the treatment of acid mine drainage" Mine Water Environ., 21, 91-99(2002). https://doi.org/10.1007/s102300200024
  4. Feng, D., van Deventer, J. S. J. and Aldrich, C., "Removal of pollutants from acid mine wastewater using metallurgical by-product slags," Sep. Purif. Technol., 40, 61-67(2004). https://doi.org/10.1016/j.seppur.2004.01.003
  5. Gupta V, and Sharma S., "Removal of cadmium and zinc from aqueous solutions using red mud," Environ. Sci. Technol., 36, 3612-3617(2002). https://doi.org/10.1021/es020010v
  6. Nadaroglu, H., Kalkan, E., Demir, N., "Removal of copper from aqueous solution using red mud," Desalination, 251, 90-95(2010). https://doi.org/10.1016/j.desal.2009.09.138
  7. Weng, C. H. and Huang, C. P., "Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash," J. Colloids Surf. A : Physicochem. Eng. Aspects, 247, 137-143(2004). https://doi.org/10.1016/j.colsurfa.2004.08.050
  8. Gitari, M. W., Petrik, L. F., Etchebers, O., Key D. L., Iwuoha, E. and Okujeni, C., "Treatment of acid mine drainage with fly ash: Removal of major contaminants and trace elements," J. Environ. Sci. Health Part A., 41, 1729-1747 (2006). https://doi.org/10.1080/10934520600754425
  9. Erdem, E., Karapinar, N. and Donat, R., "The removal of heavy metal cations by natural zeolites" J. Colloid Interface. Sci., 280, 309-314(2004) https://doi.org/10.1016/j.jcis.2004.08.028
  10. Wingenfelder, U., Hansen C., Furrer, G., Schulin, R., "Removal of heavy metals from mine waters by natural zeolites," Environ. Sci. Technol., 39, 4606-4613(2005). https://doi.org/10.1021/es048482s
  11. Sprynskyy, M., Buszewski, B., Terzyk, A. P. and Namienik, J., "Study of the selection mechanism of heavy metal $(Pb^{2+},\;Cu^{2+},\;Ni^{2+}\;and\;Cd^{2+})$ adsorption on clinoptiloite," J. Colloid Interface. Sci., 304, 21-28(2006). https://doi.org/10.1016/j.jcis.2006.07.068
  12. 김동희, 임수빈, "산업부산물을 활용한 산성폐수 내 중금속 제거용 다기능성 세라믹 소재의 개발," 한국물환경학회지, 28, 277-284(2012).
  13. Kesraoui-Ouki, S. and Kavannagh, M., "Performance of natural zeolites for the treatment of mixed metal-contaminated effluents," Waste Manage. Res., 15, 383-389(1997). https://doi.org/10.1177/0734242X9701500406
  14. Alvarez-Ayuso, E., Garcia-Sanchez, A., Querol, X., "Purification of metal electroplating waste waters using zeolites," Water Res., 37, 4855-4862(2003). https://doi.org/10.1016/j.watres.2003.08.009

피인용 문헌

  1. Stabilization of mixed heavy metals in contaminated marine sediment using steel slag vol.38, pp.3, 2014, https://doi.org/10.5394/KINPR.2014.38.3.269
  2. Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.10