DOI QR코드

DOI QR Code

Evaluation of nutritive value of chestnut hull for ruminant animals using in vitro rumen fermentation

밤 가공 부산물의 반추가축용 사료 가치 평가: in vitro 반추위 배양

  • Jeong, Sin-Yong (Department of Animal Biosystem Sciences,Chungnam National University) ;
  • Jo, Hyeon-Seon (Chungcheongnam-Do Forest Environment Research Institute) ;
  • Park, Gi-Su (Chungcheongnam-Do Forest Environment Research Institute) ;
  • Kang, Gil-Nam (Chungcheongnam-Do Forest Environment Research Institute) ;
  • Jo, Nam-Chul (Department of Animal Biosystem Sciences,Chungnam National University) ;
  • Seo, Seongwon (Department of Animal Biosystem Sciences,Chungnam National University)
  • 정신용 (충남대학교 동물바이오시스템과학과) ;
  • 조현선 (충청남도 산림 환경 연구소) ;
  • 박기수 (충청남도 산림 환경 연구소) ;
  • 강길남 (충청남도 산림 환경 연구소) ;
  • 조남철 (충남대학교 동물바이오시스템과학과) ;
  • 서성원 (충남대학교 동물바이오시스템과학과)
  • Received : 2012.06.04
  • Accepted : 2012.07.26
  • Published : 2012.09.30

Abstract

During the manufacturing process of chestnut, 50% of biomass is produced as chestnut shell (CS) or chestnut hull (CH), a forestry by-product. Due to its high fiber content and economic benefit, there is a possibility of using chestnut hull as a supplement for a ruminant diet. Few studies, however, have been conducted on evaluating nutritive value of chestnut hull for ruminant animals. The objective of this study were thus to analyze chemical composition of CS, a by-product after the first processing of chestnut, and CH, a by-product after the second processing, and access in vitro rumen fermentation characteristics of them. For the in vitro fermentation using strained rumen fluid obtained from a fistulated Hanwoo steer, commercial total mixed ration (TMR) for dairy goat was used as a basal diet and was replaced with different proportions of chestnut shell and hull. A total number of 13 treatments were carried out in this study: 100% TMR, 100% CS, 100% CH, a mix with 50% CS and 50% of CH (MIX), TMR replaced with 5%, 10%, or 15% of CS, CH, or MIX, respectively. For each treatment, in vitro dry matter digestibility (IVDMD) and pH after 48 hours of rumen fermentation were measured. Gas production at 6, 12, 24, 48 hours of incubation was also analyzed. Compared to CH, CS contains higher level of fiber (NDF, ADF, lignin) and consequently has a lower amount of non-fiber carbohydrate, but no difference was observed in the other nutrients (i.e. crude protein, crude fat, and ash). IVDMD was significantly (p<0.05) the highest in 100% CH (71.97%) and the lowest in 100% CS (42.80%). Addition of CH by replacing TMR did not affect IVDMD, while an increase in the proportion of CS tended to decrease IVDMD. The total gas production after 48 hours of incubation and the rate of gas production were also the highest in 100% CH and the lowest in 100% CS (P<0.05). Likewise, the pH after 48 hours of fermentation was significantly (p<0.05) the lowest in 100% CH (6.33) and the highest in 100% CS (6.50), and no significant difference in gas production was observed when TMR was replaced with CS or CH up to 15% (P>0.05). In conclusion, CH may successfully be used for a supplement in a ruminant diet. The nutritive value of CS is relative low, but can replace, if not 100%, low quality forage. This study provides valuable information about the nutritive value of CS and CH. An in vivo trials, however, is needed for conclusively accessing the nutritive value of CS and CH.

밤의 가공과정에서 임업 부산물로 생산되는 율피(밤껍질)는 밤 생산량의 50%를 차지하며, 사료비 저감을 위한 반추동물의 사료원으로서 이용 가능성이 있으나 이에 대한 연구는 미비한 실정이다. 본 연구에서는 밤의 가공 부산물인 1, 2차 율피의 반추동물용 사료로서의 영양적 가치와 반추위 발효 특성을 분석하기 하기 위해 1, 2차 율피의 영양소를 분석하고, 48시간 동안 in vitro 반추위 발효 실험을 실시하여 율피의 첨가 수준에 따른 in vitro 반추위 건물 소화율 및 가스 발생량을 측정하였다. In vitro 실험의 기본 사료로는 시중에서 판매되는 유산양 TMR을 이용했으며, 기본 사료와 1차 율피 및 2차 율피의 비율을 달리하여 13개의 처리구로 실험을 실시하였다. 처리구는 2차 율피 100%, 1차 율피 100%, 2차 율피와 1차 율피의 1:1 혼합구, TMR 100% 및 TMR을 2차 율피, 1차 율피 또는 1, 2차 율피 혼합으로 각각 5%, 10%, 15% 대체한 처리구이다. 율피의 일반 성분분석에서 1차 율피는 2차 율피에 비해 섬유소(NDF, ADF, 리그닌) 함량이 전체적으로 높고 이에 따라 비섬유소탄수 화물의 함량은 낮으나, 그 외의 영양소에서는 차이를 보이지 않았다. In vitro 반추위 건물 소화율은 유의적으로(p<0.05) 2차 율피(71.97%)가 가장 높았고, 1차 율피(42.80%)가 가장 낮았다. 2차 율피의 첨가 수준이 증가됨에 따라 건물소화율은 변화가 없었으며, 1차 율피의 첨가에 따라서는 소화율이 감소하는 경향을 보였다. 가스 발생량은 2차 율피 처리구에서 48시간 가스 발생량 및 발생 속도가 가장 높았고, 1차 율피 처리구에서 가장 낮았으며, TMR을 율피로 15%까지 대체하였을 때 가스 발생량의 차이는 유의하지 않았다. pH 또한 유의적으로(p<0.05) 2차 율피(6.33)에서 가장 낮았고, 1차 율피(6.50)에서 가장 높았다. 결론적으로 2차 율피는 반추동물의 사료 자원으로서 이용가치가 충분히 있으며, 1차 율피의 경우 상대적으로 사료가치가 떨어지나 조사료를 일부 대체하는 것은 가능할 것으로 판단된다. 하지만, 율피의 사료 가치를 보다 올바로 평가하기 위해서는 동물을 이용한 in vivo 대사, 소화, 성장 및 기호성 실험이 필요한 것으로 사료된다.

Keywords

References

  1. AOAC. 2011. Official Methods of Analysis. 18th ed., revision 4. AOAC International
  2. Deaville ER, Givens DI, Mueller-Harvey I. 2010. Chestnut and mimosa tannin silages: Effects in sheep differ for apparent digestibility, nitrogen utilisation and losses. Animal Feed Science and Technology 157: 129-138. https://doi.org/10.1016/j.anifeedsci.2010.02.007
  3. Doane PH, Schofield P, Pell AN. 1997. Neutral detergent fiber disappearance and gas and volatile fatty acid production during the in vitro fermentation of six forages. Journal of Animal Science 75: 3342-3352. https://doi.org/10.2527/1997.75123342x
  4. Frutos P, Raso M, Hervas G, Mantecon AR, Perez V, Giraldez FJ. 2004. Is there any detrimental effect when a chestnut hydrolysable tannin extract is included in the diet of finishing lambs?. Animal Research 53: 127-136. https://doi.org/10.1051/animres:2004001
  5. Goering HK, Van Soest PJ. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agriculture handbook no. 379. ARS-USDA, Washington, DC.
  6. Jeon BG. 1998. A study on the production of chestnut powder in the inner shell (endo carp) of a chestnut from its treatment plant. Journal of Korea Solid Wastes Engineering Society 15: 57-65.
  7. Korea Forest Service. 2010. Forest production cost survey.
  8. KREI (Korea Rural Economics Institute). 2010. Agriculture Outlook.
  9. McLeod MN. 1974. Plant tannins-their role in forage quality. Nutrition Abstracts and Reviews 44: 803-815.
  10. McMahon LR, McAllister TA, Berg BP, Majak W, Acharya SN, Popp JD, Coulman BE, Wang Y, Cheng KJ. 2000. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Canadian Journal of Plant Science 80: 469-485. https://doi.org/10.4141/P99-050
  11. Mueller-Harvey I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture 86: 2010-2037. https://doi.org/10.1002/jsfa.2577
  12. Pell AN, Schofield. P. 1993. Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science 76: 1063-1073. https://doi.org/10.3168/jds.S0022-0302(93)77435-4
  13. Roth S, Steingass H, Drochner W. 2001. Wirkungen von tanninextrakten auf die parameter der pansenfermentation in vitro. In Zadravec-Erjavec Days. Radenci, Slowenien. pp.64-70.
  14. Statistics Korea. 2010. Livestock production cost survey.
  15. Van Soest PJ. 1994. Nutritional ecology of the ruminant. Cornell University Press, Ithaca, NY.
  16. Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  17. Zimmer N, Cordesse R. 1996. Digestibility and ruminal digestion of non-nitrogenous compounds in adult sheep and goats: Effects of chestnut tannins. Animal Feed Science and Technology 61: 259-273. https://doi.org/10.1016/0377-8401(95)00940-X