DOI QR코드

DOI QR Code

Seismic Performance Evaluation and Retrofit of a 2-Story Steel Building Using a Fragility Contour Method

취약성 등고선을 이용한 비내진 2층 철골조 건축물에 대한 내진성능 평가와 보강

  • Received : 2011.12.07
  • Accepted : 2012.04.09
  • Published : 2012.04.30

Abstract

Based on the Korean Building Standard Law, a building less than 3-stories and $1000m^2$ in area is defined as a small-level building and, as a result, this type of building has been excluded from the requirement to comply with seismic design. In order to prevent the loss of life and property under earthquake loadings, the small-scale building should satisfy the seismic performance specified in the current code through a seismic retrofit. In this study, a seismic retrofit scheme of a Buckling-Restrained Knee Brace (BRKB) was developed for non-seismic 2-story steel buildings, including small-scale buildings, using a fragility contour method. In order to develop an effective retrofit scheme of the BRKB for the building, a total of 75 BRKB analytical models were used to achieve the desired performance levels and analyzed using the fragility contour method. The seismic performance of the retrofitted building was evaluated in terms of the weight of the developed BRKB systems. This study shows that the fragility contour method can be used for rapid evaluation and is an effective tool for structural engineers.

우리나라의 건축법 시행령에서는 3층 미만 그리고 연면적 $1000m^2$ 미만의 건축물을 소규모 건축물로 정의하고 있으며 내진설계 적용 대상 범위에서 제외하고 있다. 하지만 소규모 건축물에 거주하는 인구의 비율이 상당하다는 사실을 고려할 때, 소규모 건축물의 내진성능을 확보하는 것은 지진 재해 경감에 있어서 중요한 부분이라고 할 수 있다. 이 논문에서는 2층 철골 건물에 비좌굴 Knee가새를 적용한 예제 연구를 통해서 소규모 건물의 내진보강 전략에 대한 연구를 수행하였다. 확률론적 내진성능 목표를 바탕으로 가새의 상세를 결정하였고, 이를 위해서 다양한 구조적 특성에 대한 취약성 분석 결과를 즉시 구해서 비교할 수 있는 취약성 등고선을 이용하였다. 기존에 수행된 실험적, 해석적 연구결과를 바탕으로 75개의 BRKB모델을 개발하였으며, 이 중에서 예제 건축물에 대한 BRKB의 가장 효과적인 보강 방안은 취약성 곡선을 이용한 내진성능의 검증과 강재의 무게를 바탕으로 결정하였다. 본 연구를 통해서 취약성 등고선을 이용한 내진성능평가 방법이 확률론적 내진성능목표를 바탕으로 한 보강전략수립에 효율적으로 사용될 수 있는 것으로 나타났다.

Keywords

References

  1. ICC, International Building Code (IBC), International code council, INC, 2012.
  2. ICC, International Residential Code (IRC), International code council, INC, 2012.
  3. Horie, K., Maki, N., Kohiyama, M., Lu, H., Tanaka, S., Hashitera, S., Shigehawa, K., and Hayashi, H., Process of Housing Damage Assessment: The 1995 Hanshin-Awaji Earthquake Disater Case, Natural hazards, Vol. 29, No. 3, 341-370, 2003. https://doi.org/10.1023/A:1024777104808
  4. Black, C., Makris, N., and Aiken, I., Component testing, Stability Analysis and Characterization of Buckling Restrained Unbonded Braces, Report No. PEER-2002/08: PEERC, University of California at Berkeley, California, 2002.
  5. Sam, M., Balendra, T., and Liaw, C., "Earthquake-resistant steel frames with energy dissipating knee elements," Engineering Structures, Vol. 17, No. 5, 334-343, 1995. https://doi.org/10.1016/0141-0296(95)00016-Z
  6. Kim, J., and Seo, Y., "Seismic design of steel structures with buckling-restrained knee braces," Journal of Constructional Steel Research, Vol. 59, No. 12, 1477-1497, 2003. https://doi.org/10.1016/S0143-974X(03)00100-7
  7. Takeuchi, T., Hajjar, J. F., Matsui, R., Nishimoto, K., and Aiken, I.D., "Local buckling restraint condition for core plates in buckling restrained braces," Journal of Constructional Steel Research, Vol. 66, No. 2, 139-149, 2010. https://doi.org/10.1016/j.jcsr.2009.09.002
  8. Wen, Y.K., Ellingwood, B.R., and Bracci, J., Vulnerability function framework for consequence-based engineering, MAE Report 04-04, Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, 2004.
  9. Jeong, S.H., and Elnashai, A.S., "Probabilistic fragility analysis parameterized by fundamental response quantities," Engineering Structures, Vol. 29, No. 6, 1238-1251, 2007. https://doi.org/10.1016/j.engstruct.2006.06.026
  10. 정성훈, 이기학, 이도형, "지진 취약성 등고선을 이용한 내진성능 평가 방법," 한국지진공학회 논문집, 제15권, 제3호, 65-72, 2011.
  11. Elnashai, A.S., Papanikolaou, V., and Lee, D. ZeusNL - A Program for Inelastic Dynamic Analysis of Structures, MAE Center, University of Illinois at Urbana-Champaign, USA., 2001.
  12. 대한건축학회, 건축구조설계기준 - KBC 2009, 2009.
  13. FEMA, NEHRP Recommended Sesimic Provisions for New Buildings and Other Structures, Report No. FEMA P-750, Federal Emergency Management Agency, Washington, D.C., 2010.
  14. FEMA, Pre-standard and commentary for the seismic rehabilitation of buildings, Report No. FEMA 356, Federal Emergency Management Agency, Washington(DC), 2000.
  15. Somerville, P., Smith, N., Puntamurthula, S., and Sun, J., Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project, SAC Background Document SAC/BD-97/04, SAC Joint Venture, Sacramento, California, 1997.
  16. SeismoSoft. SeismoMatch - A computer program for adjusting earthquake accelerograms to match a specific target response spectrum, http://www.seismosoft.com, 2010.
  17. FEMA, State-of-the-art report on performance prediction and evaluation of moment-resisting steel frame structures, Report No. FEMA 355f, Federal Emergency Management Agency, Washington, D.C, 2000.
  18. Leyendecker, E.V., Hunt, R.J., Frankel, A.D., and Rukstales, K.S., "Development of maximum considered earthquake ground motion maps," Earthquake Spectra, Vol. 16, No. 1, 21-40, 2000. https://doi.org/10.1193/1.1586081
  19. Watanabe, A., Hitomoi, Y., Saeki, E., Wada, A., and Fujimoto, M., "Properties of braced encased in bucklingrestrained concrete and steel tube," Proc. 9th World Conference on Earthquake Engineering, Tokyo/Kyoto, Japan, 4, 719-724, 1988.
  20. Sridhara, B.N., "Sleeved column-as a basis compression member," Proceedings, 4th International conference on steel structures & space frames, Singapore. 181-188, 1990.
  21. Prasad, B., "Experimental investigation of sleeved column," Proceedings, 33rd Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Dallas, 1992.
  22. Ju, Y.K., Kim, M.H., Kim, J., and Kim, S.D., "Component tests of buckling-restrained braces with unconstrained length," Engineering Structures, Vol. 31, No. 2, 507-516, 2009. https://doi.org/10.1016/j.engstruct.2008.09.014
  23. 박대진, 주영규, 김명한, 김도현, 김상대, "비좌굴 가새의 무보강 길이에 따른 이력거동 평가," 대한건축학회논문집, 제22권, 제12호, 37-46, 2006.
  24. Mehmet, E., Cem, T., "An Experimental Study on Steel- Encased Buckling-Restrained Brace Hysteretic Dampers," Earthquake Engng Struct. Dyn. Vol. 39, No. 5, 561-581, 2010.
  25. AISC, Seismic Provision for Structural Steel Building. American Inst. of Steel construction, Inc., Chicago, 2005.
  26. 이진, 이기학, 이한선, 김희철, 이영학, "채널 형강을 이용한 비좌굴 Knee Bracing Syste의 내진성능에 대한 실험적 연구," 한국강구조학회 논문집, 제21권, 제1호, 71-81, 2009.
  27. Aristizabal-Ochoa, J.D., "Disposable knee bracing: improvement in seismic design of steel frames," Journal of Structural engineering, Vol. 112, No. 7, 1544-1552, 1986. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1544)
  28. Suita, K., Inoue, K., Koetaka, Y., Ando, M., and Byakuno, Y., "Full-scale test on weld-free building structure with knee brace dampers," International conference on behaviour of steel structures in seismic areas, Stessa 2006, 2006, 533-540.
  29. Prakash, V., Powell, G.H., and Campbell, S., "Drain-2DX, Element description and user guide", Univ. of California, Berkeley, CA, 1993.
  30. ATC, Seismic Evaluation and Retrofit of Concrete Buildings, Report No. ATC-40, Applied Technology Council, Redwood City, California, 1996.
  31. FEMA, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report No. FEMA-273 Washington, DC, 1997.

Cited by

  1. Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes vol.17, pp.3, 2013, https://doi.org/10.5000/EESK.2013.17.3.133