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FACIAL STRUCTURES FOR SEPARABLE STATES

Hyun-Suk Choi and Seung-Hyeok Kye

Abstract. The convex cone V1 generated by separable states is con-
tained in the cone T of all positive semi-definite block matrices whose

block transposes are also positive semi-definite. We characterize faces of
the cone V1 induced by faces of the cone T which are determined by pairs
of subspaces of matrices.

1. Introduction

Let Mn denote the C∗-algebra of all n× n matrices of complex entries, and
M+

n the cone of all positive semi-definite matrices in Mn. Then the positive
cone (Mn⊗Mm)+ of the tensor product Mn⊗Mm of two C∗-algebras Mn and
Mm is strictly larger than the tensor product M+

n ⊗M+
m of two positive cones

M+
n and M+

m, that is, we have

M+
n ⊗M+

m ⊊ (Mn ⊗Mm)+,

even in the simplest case of m = n = 2.
This is the starting point of the notion of entanglement, which is one of the

key research area of quantum physics during the last two decades in connection
with quantum information theory and quantum communication theory. Note
that the tensor product of two positive cones coincides with the positive cone
of the tensor product of the two commutative C∗-algebras, that is, we have

A+ ⊗ B+ = (A⊗ B)+

for commutative C∗-algebras A and B. This is why entanglement arising in
quantum mechanics has no counterpart in classical mechanics.

A positive semi-definite block matrix in (Mn⊗Mm)+ is said to be separable
if it belongs to M+

n ⊗M+
m, and it is said to be entangled if it belongs to

(Mn ⊗Mm)+ \M+
n ⊗M+

m.

Following the notations in [13], we denote by V1 the cone of all separable
positive semi-definite block matrices, which is nothing but M+

n ⊗M+
m. Recall
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that a matrix itself represents a linear functional on the matrix algebra via
the Hadamard product, and so an element in M+

n ⊗M+
m represents a separable

state on the matrix algebra if it is normalized.
It is very difficult to determine if a given positive semi-definite block matrix

is separable or entangled, and it had been one of the main research topics
in quantum physics to find useful criteria to distinguish separable ones from
entanglement. One of the early criterion for separability was given by Choi
[11] in mathematics side and Peres [26] in physics side, which says that a
positive semi-definite block matrix A is separable then the block transpose, or
the partial transpose Aτ of A is also positive semi-definite. There are many
other criteria even though it is now known [14] that it is NP hard in general
to determine if a given one is separable or entangled. See Chapter 15 in [5] for
various separability criteria.

We denote by T the convex cone of all positive semi-definite block matrices
in (Mn ⊗Mm)+ whose partial transposes are also positive semi-definite. The
above mentioned criterion, called PPT criterion by quantum physicists, tells
us the relation

V1 ⊂ T

holds in general. Woronowicz [31] showed that V1 = T if and only if (m,n) =
(2, 2), (2, 3) or (3, 2), and gave an explicit example in T \ V1 in the case of
(m,n) = (2, 4). This kind of example is called a positive partial transpose
entangled state (PPTES) when it is normalized. An example of a PPTES in
(m,n) = (3, 3) was firstly given by Choi [11]. Much efforts have been given
since nineties to find various types of PPTES’s. See [6], [7], [12], [15], [16] and
[17], for example.

Finding an example of a PPTES is equivalent to find a non-decomposable
positive linear map between matrix algebras, by the duality theory between
entanglement and positive linear maps, as was seen in [31], [29] and [13]. In
mathematics side, operator algebraists have been interested in the theory of
positive linear maps since the fifties [27], [28]. Actually, the above mentioned
examples of PPTES’s in [31] and [29] are byproducts of the efforts to show
that there exist non-decomposable positive linear maps. In these days, many
mathematicians are interested in the entanglement theory itself. See [1], [2],
[21] and [30], for example.

One of the standard method to understand a given convex set is to char-
acterize the facial structures. In this vein, the second author with Ha [15]
characterized the faces of the cone T in terms of pairs of subspaces of the inner
product space Mm×n of all m × n matrices. On the other hands, the facial
structures for the cone V1 is not clear, even though its extremal rays are easy
to find by the definition. Recently, faces of V1 whose interior points have the
range spaces with low dimensions have been studied [1] in mathematics side.

Two convex cones T and V1 share faces in various ways. For examples, if
subspaces characterizing a face of T is low dimensional, then this face of T
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itself becomes a face of V1 by [20]. On the other hands, some faces of T are
independent of the cone V1. For example, if a face of T has a so called edge
PPTES as an interior point, then this face has no intersection with V1 except
the zero. Therefore, it is natural to ask what kinds of faces of T also give rise
to faces of V1, and that is the purpose of this paper to answer.

Let C0 be a convex subset of a convex set C1. A face F1 of the convex set
C1 gives rise to a face C0 ∩ F1 of C0 whenever it is nonempty. Note that two
different faces of C1 may give rise to the same face of C0, in general. We say
that a face F0 of C0 is induced by a face F1 of C1, or F1 induces F0, if the
following conditions

(1) F0 = C0 ∩ F1, intF0 ⊂ intF1

hold, where intC denotes the relative interior of the convex set C with respect
to the hyperplane spanned by C. Then every induced face of C0 is induced by
a unique face of C1, and every inducing face of C1 induces a unique face of C0.
It is easy to see that a face F1 of C1 induces a face of C0 if and only if the
condition

(2) C0 ∩ intF1 ̸= ∅

holds. If this is the case, then the face F1 of C1 induces the face C0 ∩F1 of the
smaller convex set C0.

Recall again that every face of T corresponds to a pair of subspaces ofMm×n,
as mentioned above. In the next section, we characterize faces of T which induce
faces of V1 in terms of the corresponding pairs of subspaces. In Section 3, we
concentrate on the 2⊗n case, and investigate the possible range of dimensions
of pairs of subspaces of M2×n for which the corresponding faces of T induce
faces of V1. In the Section 4, We characterize faces of V1 which are induced
by faces of T, and give an example of a face of V1 which is not induced by a
face of T in the 3⊗ 3 case in the final section.

Throughout this paper, every vector will be considered as a column vector.
If x ∈ Cm and y ∈ Cn, then x will be considered as an m × 1 matrix, and y∗

will be considered as a 1× n matrix, and so xy∗ is an m× n rank one matrix
whose range is generated by x and whose kernel is orthogonal to y. For natural
numbers m and n, we denote by m∨n and m∧n the maximum and minimum
of m and n, respectively. Finally, {ei,j : i = 1, . . . ,m, j = 1, . . . , n} denotes the
usual matrix units in Mm×n.

The second author is grateful to Professor Marcin Marciniak for giving us
the preprint [25].

2. Faces of PPT’s inducing faces for separable states

To begin with, we review briefly the facial structures for the convex cone T of
all positive semi-definite block matrices whose block transposes are also positive
semi-definite [15]. We identify a matrix z ∈ Mm×n and a vector z̃ ∈ Cn ⊗ Cm
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as follows: For z ∈ [zik] ∈ Mm×n, we define

zi =
n∑

k=1

zikek ∈ Cn, i = 1, 2, . . . ,m,

z̃ =

m∑
i=1

zi ⊗ ei ∈ Cn ⊗ Cm.

Then z 7→ z̃ defines an inner product isomorphism from Mm×n onto Cn ⊗Cm.
We also define

Vs = conv {z̃z̃∗ ∈ Mn ⊗Mm : rank z ≤ s},
Vs = conv {(z̃z̃∗)τ ∈ Mn ⊗Mm : rank z ≤ s}

for s = 1, 2, . . . ,m ∧ n, where convX means the convex cone generated by X,
and Aτ denotes the block-transpose of A, that is,

(
m∑

i,j=1

aij ⊗ eij)
τ =

m∑
i,j=1

aji ⊗ eij .

It is clear that Vm∧n coincides with the cone of all positive semi-definite
mn×mn matrices. We have the following chains

V1 ⊂ V2 ⊂ · · · ⊂ Vm∧n, V1 ⊂ V2 ⊂ · · · ⊂ Vm∧n

of inclusions. The cone
T = Vm∧n ∩ Vm∧n

consists of all positive semi-definite matrices whose block transposes are also
positive semi-definite, or positive semi-definite matrices with positive partial
transposes in the language of quantum physics. If z = xy∗ ∈ Mm×n is a rank
one matrix, then z̃ = y ⊗ x, and we have

z̃z̃∗ = yy∗ ⊗ xx∗,

and so it follows that
V1 = M+

n ⊗M+
m.

We also have

(3) (z̃z̃∗)τ = (yy∗)⊗ (xx∗)t = yy∗ ⊗ xx∗ = w̃w̃∗

with w = xy∗, and so we have V1 = V1.
For subspaces D and E of Mm×n, we define

ΨD = {A ∈ Vm∧n : RA ⊂ D̃},
ΨE = {A ∈ Mn ⊗Mm : Aτ ∈ ΨE},

where RA denotes the range space of A, and Ẽ = {z̃ : z ∈ E} ⊂ Cn ⊗ Cm.
Note that we have

(4)
intΨD = {A ∈ ΨD : RA = D̃},

intΨE = {A ∈ ΨE : RAτ = Ẽ}.
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Every pair (D,E) of subspaces of Mm×n gives rise to a nontrivial face

(5) τ(D,E) := ΨD ∩ΨE

of the convex cone T, whenever the intersection is not trivial. Conversely, every
face of T is of the form (5) for a unique pair (D,E) of subspaces under the
condition

int τ(D,E) ⊂ intΨD ∩ intΨE .

This condition actually implies the following

(6) int τ(D,E) = intΨD ∩ intΨE

by [16], Proposition 2.1. In this way, a face of T corresponds to a pair of
subspaces of Mm×n.

Theorem 2.1. Let (D,E) be a pair of subspaces of Mm×n. Then the following
are equivalent:

(i) The pair (D,E) gives rise to a nontrivial face τ(D,E) of T which
induces a face of V1.

(ii) There exist x1, . . . , xα ∈ Cm and y1, . . . , yα ∈ Cn such that

D = span {x1y
∗
1 , . . . , xαy

∗
α}, E = span {x1y

∗
1 , . . . , xαy

∗
α}.

Proof. Assume (i), and let F be the induced face of V1 by τ(D,E). Choose an
interior point

(7) A =
α∑

i=1

z̃iz̃i
∗

of F with rank one matrices zi = xiy
∗
i for i = 1, 2, . . . α. Then A is also an

interior point of τ(D,E) by (1). It follows that A is also an interior point of
ΨD by (6), and so we see that

D = span {x1y
∗
1 , . . . , xαy

∗
α}

by (4). Similarly, we also see that Aτ is an interior point of ΨE , from which
we have

E = span {x1y
∗
1 , . . . , xαy

∗
α}

by (3) and (4).
Conversely, we assume (ii), and define A ∈ τ(D,E) as in (7). Then we

see that A ∈ V1 is an interior point of τ(D,E) as above. Therefore, τ(D,E)
induces a face of V1 by (2). □

Note that if the rank of a block matrix A ∈ Mn ⊗ Mm is less than or
equal to m ∨ n, then A ∈ T if and only if A ∈ V1 [20]. Therefore, if a pair
(D,E) of subspaces gives rise to a nontrivial face of T and dimD ≤ m ∨ n or
dimE ≤ m∨n, then we see that the pair (D,E) already satisfies the conditions
of Theorem 2.1. See also [1] for the structures of faces of V1 whose interior
points have ranks less than or equal to m ∨ n.
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The range criterion for separability [19] tells us that A ∈ (Mn ⊗ M)+ is
separable then the pair (RA,RAτ ) satisfies the condition (ii) of the theorem,
where we confuse subspaces of Mm×n and Cn ⊗ Cm by the correspondence
z 7→ z̃. We note that the proof of this criterion is already contained in the
proof of Theorem 2.1. It is known [4] that the range criterion is not sufficient
for separability. In this line, Theorem 2.1 tells us that if a block matrix A ∈
(Mn⊗Mm)+ satisfies the range criterion, in other words, if the pair (RA,RAτ )
satisfies the condition (ii) of the theorem, then there is a separable state B with

(RA,RAτ ) = (RB,RBτ )

such that A and B lie in the same face of T as interior points. We also note
that the condition (ii) of the theorem appeared in [24] to classify faces of the
cone of all decomposable positive linear maps.

In the simplest 2 ⊗ 2 case, every possible pairs of subspaces satisfying the
condition (ii) of Theorem 2.1 are listed in [15]. The possible pairs of dimensions
of subspaces are

(1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4).

This is a byproduct of the characterization [8] of faces of the cone of all positive
linear maps between M2. See also [23]. It is worthwhile to note that if V is a
rank two matrix inM2×2, then the pair (V ⊥,M2×2) satisfies the condition (ii) of
the theorem by the following explicit construction: If we write V = xy∗+µzw∗

for nonzero µ ∈ C and unit vectors x, y, z and w with for x ⊥ z, y ⊥ w by the
polar decomposition, then we have

V ⊥ = span {xw∗, zy∗, (µx− z)(y + w)∗, (µx− (1− i)z)((1 + i)y + w)∗},

M2×2 = span {xw∗, zy∗, (µx− z)(y + w)∗, (µx− (1− i)z)((1 + i)y + w)∗},
as was desired. See [8], Proposition 3.7.

In general, it is very difficult to determine if a given pair of subspaces satisfies
the condition (ii) of the theorem or not. It was recently shown in [25] that if
the rank of A ∈ Mm×n is greater than or equal to 2 and B ∈ Mm×n satisfies
the following condition

(x |Ay) = 0 =⇒ (x |By) = 0 for each x ∈ Cm and y ∈ Cn,

then B = 0, where ( | ) denotes the inner product in Cm. This shows that if
the rank of A ∈ Mm×n is greater than or equal to 2, then the pair (A⊥,Mm×n)
satisfies the condition (ii) of the theorem. Indeed, if we collect all rank one
matrices {xy∗} orthogonal to A in Mm×n, then the above result shows that
matrices {xy∗} for those collection generate the whole space Mm×n, and so
does the set {xy∗}, by the relation

(x |Ay) = (xy∗ |A),
where ( | ) of the right side denotes the inner product in Mm×n.

If the pair (D,E) satisfies the condition (ii) of the theorem and xy∗ is or-
thogonal to D, then it is clear that xy∗ is orthogonal to E. Therefore, if the
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pair (D,Mm×n) satisfies the condition (ii) of the theorem, then D⊥ has no
rank one matrices. Therefore, we have the following:

Proposition 2.2. Let D be a subspace of Mm×n of codimension one with
A ∈ D⊥. Then the pair (D,Mm×n) satisfies the condition (ii) of the theorem
if and only if rankA ≥ 2.

It would be very nice to know sufficient and necessary conditions on sub-
spaces D of Mm×n for which the pairs (D,Mm×n) satisfy the condition (ii).
The absence of rank one matrices in the orthogonal complement D⊥ is an ob-
vious necessary condition. But, this is not sufficient. There is a 4-dimensional
subspace D of M3×3 without rank one matrices for which D⊥ has only six
rank one matrices up to scalar multiplications [17]. In fact, every generic 4-
dimensional subspace of M3, in the sense of algebraic geometry, has no rank
one matrices and its orthogonal complement has only six rank one matrices
up to constant multiples. In this case, the pair (D⊥,M3×3) never satisfies the
condition (ii) of the theorem.

3. Examples in 2 ⊗ n cases

Now, we consider an example of a pair of subspaces satisfying the condition
of Theorem 2.1 for which the difference of dimensions of two spaces is big. In
[22], a 5-dimensional subspace of M2×4 spanned by rank one matrices has been
considered. See also [3]. Following this example, we put

xα =

(
1
α

)
∈ C2, yα =


1
α
...

αn−1

 ∈ Cn

for α ∈ C, and consider the set

(8)

{
xαy

∗
α =

(
1 α · · · αn−1

α α2 · · · αn

)
: α ∈ C

}
of rank one matrices in M2×n.

We first show that the set

(9) {xαy
∗
α : α = α0, α1, . . . , αn}

is linearly independent, whenever α0, α1, . . . , αn are mutually distinct complex
numbers. To to this, let

c0xα0y
∗
α0

+ c1xα1y
∗
α1

+ · · ·+ cnxαny
∗
αn

= 0.

Note that the (1, k)-entry of the above matrix is
∑n

j=0 α
k−1
j cj for k = 1, 2, . . . , n

and the (2, n)-entry is
∑n

j=0 α
n
j cj . So, we have

αk
0c0 + αk

1c1 + · · ·+ αk
ncn = 0
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for each k = 0, 1, . . . , n. Whenever α0, α1, . . . , αn are mutually distinct complex
numbers the matrix 

1 1 . . . 1
α0 α1 . . . αn

...
...

. . .
...

αn
0 αn

1 . . . αn
n


is non-singular, and so the set (9) is linearly independent. Therefore, we see
that the span Dn of (8) is an (n + 1)-dimensional subspace of M2×n whose
orthogonal complement is spanned by

{e1,j+1 − e2,j : j = 1, 2, . . . , n− 1}.

We note that D⊥
n has no rank one matrices.

Now, we proceed to show that the set{
xαy

∗
α =

(
1 α · · · αn−1

α αα · · · ααn−1

)
: α ∈ C

}
generates the whole space M2×n. To do this, we show that the set

(10) {xαy
∗
α : α = 0, r1, r2, . . . , rn−1, ir1, ir2, . . . , irn},

consisting of 2n rank one matrices, is linearly independent, whenever r1, r2, . . .,
rn are mutually distinct nonzero real numbers. Suppose that

a0x0y
∗
0 +

n−1∑
j=1

ajxrjy
∗
rj +

n∑
j=1

bjxirjy
∗
irj = 0.

We look at the (1, k + 1) and (2, k) entries of the above matrix, to see

(11)

n−1∑
j=1

rkj aj + ik
n∑

j=1

rkj bj = 0, k = 1, 2, . . . , n− 1

n−1∑
j=1

rkj aj − ik
n∑

j=1

rkj bj = 0, k = 1, 2, . . . , n

respectively. Therefore, we have

(12)

n−1∑
j=1

rkj aj =

n∑
j=1

rkj bj = 0, k = 1, 2, . . . , n− 1.

From the relation
∑n−1

j=1 rkj aj = 0, we have aj = 0 for j = 1, 2, . . . , n − 1. If

we put this results in the second relation of (11) with k = n, then we see that
the relation

∑n
j=1 r

k
j bj = 0 in (12) also holds for k = n. Therefore, we see that

bj = 0 for j = 1, 2, . . . , n. Finally, we have a0 = 0, and so we conclude that the
set (10) is linearly independent and the pair (Dn,M2×n) satisfies the condition
of Theorem 2.1.
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We denote by Sm,n the set of all pairs (p, q) of natural numbers for which
there exist pairs (D,E) of subspaces of Mm×n satisfying the condition of The-
orem 2.1 with

dimD = p, dimE = q.

The above example shows that (n + 1, 2n) ∈ S2,n for each n = 2, 3, . . . , or
equivalently

(k, 2k − 2) ∈ S2,k−1

for k = 3, 4, . . . . Note that (p, q) ∈ Sm,n implies that (p, q) ∈ Sm′,n′ whenever
m′ ≥ m and n′ ≥ n. Since (2, 2) ∈ S2,2, we have the following:

Proposition 3.1. Let n = 2, 3, . . . . Then (k, 2k − 2) ∈ S2,n for each k =
2, 3, . . . n+ 1.

The following proposition shows that this gives us a maximal gap between
the two dimensions of the pair satisfying the condition of Theorem 2.1.

Proposition 3.2. Let n = 2, 3, . . . . Then (k, 2k − 1) /∈ S2,n for each k =
2, 3, . . . , n. We also have (1, 2) /∈ S2,n.

Proof. Assume that (k, 2k−1) ∈ S2,n for some k = 2, 3, . . . , n, then there exists
a pair (D,E) of subspaces of M2×n with dimD = k, dimE = 2k− 1 such that

D = span {xiyi
∗ : i = 1, 2, . . . , α}, E = span {xiyi

∗ : i = 1, 2, . . . , α}
for some α ∈ N and xi ∈ C2, yi ∈ Cn. If dim span {yi} ≤ k − 1, then

dimE ≤ 2(k − 1) < 2k − 1.

Therefore, the span of {yi : 1 ≤ i ≤ α} must be of dimension k. Without loss
of generality, we may assume that {y1, y2, . . . , yk} is linearly independent.

Choose an orthonormal basis {ηk+1 . . . , ηn} of the space {y1, . . . , yk}⊥ in
Cn, and w1, . . . , wk ∈ span {y1, y2, . . . , yk} so that yi ⊥ wj for i ̸= j. Finally,
choose zi ∈ C2 (i = 1, 2, . . . k) so that zi ⊥ xi for i = 1, 2, . . . , k. Then, it is
easy to see that the two sets

{ziwi
∗ : 1 ≤ i ≤ k} ∪ {eiηj∗ : i = 1, 2, j = k + 1, . . . n}

and

{ziwi
∗ : 1 ≤ i ≤ k} ∪ {eiηj∗ : i = 1, 2, j = k + 1, . . . n}

are linearly independent, and contained in the spaces D⊥ and E⊥, respectively.
Therefore, we see that

dimE⊥ ≥ k + 2(n− k) = 2n− k,

and 2k − 1 = dimE ≤ k, which cannot happen when k ≥ 2. Therefore we
conclude that (k, 2k − 1) /∈ S2,n for any k = 2, 3, . . . , n.

Finally, if span {xiy
∗
i } is one dimensional, then so is span {xiy

∗
i }. Therefore,

(1, 2) /∈ Sm,n. □

Proposition 3.3. For p < q, if (p, q) ∈ Sm,n and p ≤ s ≤ q, then (p, s) ∈ Sm,n.
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Proof. Suppose that (p, q) ∈ Sm,n, then there exists a pair of subspaces (D,E)
with dimD = p and dimE = q so that

D = span {xiyi
∗ : 1 ≤ i ≤ α}, E = span {xiyi

∗ : 1 ≤ i ≤ α}
for some α ∈ N and xi ∈ Cm, yi ∈ Cn. We may assume that {xiyi

∗ : 1 ≤ i ≤ p}
is linearly independent by rearrangement. Then, we have

dim span {xiyi
∗ : 1 ≤ i ≤ p} ≤ p < q = dim span {xiyi

∗ : 1 ≤ i ≤ α}.
Since p ≤ s ≤ q, we see that there exists k ∈ N with p ≤ k ≤ α so that

dim span {xiyi
∗ : 1 ≤ i ≤ k} = s.

Put

D′ = span {xiyi
∗ : 1 ≤ i ≤ k}, E′ = span {xiyi

∗ : 1 ≤ i ≤ k}.
Then we see the dimD′ = p and dimE′ = s, and so (p, s) ∈ Sm,n. □

With the above propositions, we can now figure out the set S2,n as is shown
in the following diagram:

u u uu uu
uu uu

uu
u

uuu
uu
uu
u

uu
uu
uu
uu

uu
uu
uu
uu

uu
uu
uu
u

uu
uu
uu
u

uu
uu
uu

uu
uu
uu

2

4

6

8

10

12

2 4 6 8 10 12

4. Faces for separable states induced by PPT

For a subset S of Mn ⊗Mm, we define

Sτ = {Aτ : A ∈ S}.
Note that the map A 7→ Aτ is an affine isomorphism of Mn ⊗Mm which pre-
serves both convex cones T and V1. Therefore, if F is a face of T (respectively
V1), then F τ is also a face of T (respectively V1). If F = σ(D,E) is a face of
T, then we have

F τ = σ(E,D).
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Recall that extremal rays of a face F of a convex cone C are determined by
the extremal rays of C which belong to F . For a face F of V1, we denote by
RF the set of all m×n rank one matrices z such that z̃z̃∗ ∈ F , which generate
extremal rays of F . It is clear that

(13) xy∗ ∈ RF ⇐⇒ xy∗ ∈ RF τ

for x ∈ Cm and y ∈ Cn, by the relation (3). Nevertheless, it should be noted
that two subspaces spanRF and spanRF τ of Mm×n has no direct relations. It
may happen that nonzero xy∗ /∈ spanRF but xy∗ ∈ spanRF τ , as we will see
in the next section.

Lemma 4.1. If F is induced by τ(D,E), then we have

(14) D = spanRF , E = spanRF τ .

Proof. If z is a rank one matrix, then it is clear that z ∈ RF implies z ∈ D
by the relation F = τ(D,E) ∩ V1. Therefore, we have spanRF ⊂ D. Take
an interior point A of τ(D,E) in V1. Then A =

∑
z̃iz̃

∗
i for rank one matrices

zi, and D is the span of {zi}. Since F is a face and
∑

z̃iz̃
∗
i ∈ F , we see that

z̃iz̃
∗
i ∈ F . Therefore zi ∈ RF , and we see that spanRF = D.
For the second relation, we note that F τ is a face of V1 which is induced by

τ(D,E)τ = τ(E,D). Therefore, we have E = spanRF τ . □

Now, we characterize faces of V1 which are induced by faces of T.

Theorem 4.2. For a face F of V1, the following are equivalent:

(i) The face F of V1 is induced by a face of T.
(ii) If xy∗ is a rank one matrix in (spanRF ) \RF , then xy∗ /∈ spanRF τ .

Proof. If the face F of V1 is induced by a face of T, then F = τ(D,E)∩V1 with
D and E as in (14) by Lemma 4.1. We assume that (ii) does not hold, and take
a rank one matrix z = xy∗ so that xy∗ ∈ spanRF \ RF and xy∗ ∈ spanRF τ .
Then we have z̃z̃∗ ∈ τ(D,E) ∩ V1 but z̃z̃∗ /∈ F . This leads to a contradiction,
and so we see that (i) implies (ii).

For the converse, we assume (ii) and define subspaces D and E as in (14).
We proceed to show the relation

(15) F = τ(D,E) ∩ V1.

If z = xy∗ is a rank one matrix and z̃z̃∗ ∈ F , then it is clear that z̃z̃∗ belongs
to τ(D,E) ∩ V1. If z̃z̃∗ ∈ τ(D,E) ∩ V1, then z = xy∗ ∈ D = spanRF

and xy∗ ∈ E = spanSF . By the assumption (ii), we have z = xy∗ ∈ RF

and z̃z̃∗ ∈ F . Therefore, we have the relation (15). From the relation (14),
we can choose finite set {zi = xiy

∗
i } in RF such that D = span {xiy

∗
i } and

E = span {xiy
∗
i }. Then it is clear that

∑
i z̃iz̃

∗
i ∈ V1 is an interior point of

τ(D,E), which induces the face τ(D,E) ∩ V1 = F of V1. □
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If the face F of V1 is induced by a face τ(D,E) of T, then we have

(16) xy∗ ∈ RF ⇐⇒ xy∗ ∈ D and xy∗ ∈ E.

Using this relation, we examine how the second condition of Theorem 4.2 works
in several cases of m = n = 2.

First, consider the case of F = τ(V ⊥,M2×2), where V is of rank 2. In this
case, RF consists of rank one matrices which is orthogonal to V . We have
spanRF = V ⊥, and there is no rank one matrix in (spanRF ) \RF .

Next, we consider the case of F = τ(M2×2, V
⊥), where V is of rank 2. In

this case, RF consists of rank one matrices xy∗ such that xy∗ ⊥ V , and we
have spanRF = M2×2. Note that xy∗ belongs to (spanRF ) \RF if and only if
xy is not orthogonal to V if and only if xy∗ /∈ RF τ .

Finally, we consider the case of F = τ(V ⊥,W⊥), where V and W are of
ranks 2 and there are rank one matrices xiy

∗
i such that

V ⊥ = span {xiy
∗
i : i = 1, 2, 3}, W⊥ = span {xiy

∗
i : i = 1, 2, 3}.

See [8], Proposition 3.6. In this case, we see that

RF = {xy∗ : xy∗ ⊥ V, xy∗ ⊥ W}, spanRF = V ⊥,

RF τ = {xy∗ : xy∗ ⊥ W, xy∗ ⊥ V }, spanRF τ = W⊥.

Therefore, we see that the second condition of Theorem 4.2 is immediate.
It would be nice if we find an intrinsic characterization for subsets R of rank

one matrices for which there exist faces F of V1 such that R = RF . We say that
a subset R of rank one matrices in Mm×n is locally full if there is no rank one
matrices in (spanR) \R. This is equivalent to say that there exists a subspace
D of Mm×n spanned by rank one matrices such that R coincides with the set
of all rank one matrices in D.

For a set R of rank one matrices, we write

R = {xy∗ : xy∗ ∈ R}.

Note that xy∗ is parallel to zw∗ if and only if xy∗ is also parallel to zw∗. If R
is a subset of Mm×n which consists of rank one matrices, then it is clear that
the pair (spanR, spanR) satisfies the second condition of Theorem 2.1, and so
we see that

FR = τ(spanR, spanR) ∩ V1

is a face of V1. In this case,

xy∗ ∈ RFR
⇐⇒ xy∗ ∈ spanR and xy∗ ∈ spanR

by (16). Therefore, we see that the relation

R ⊂ RFR

holds in general. Suppose that R is locally full. If xy∗ ∈ RFR , then xy∗ ∈
spanR, which implies xy∗ ∈ R. Therefore, we see that R = RFR

. This is also
the case when R is locally full. Indeed, if xy∗ ∈ RFR

, then xy∗ ∈ spanR. If R
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is locally full, then this implies xy∗ ∈ R and xy∗ ∈ R. Therefore, we have the
following:

Proposition 4.3. Let R be a subset of Mm×n consisting of rank one matrices.
If either R or R is locally full, then there exists a face F of V1 such that
R = RF . Furthermore, this face F is induced by a face of T.

Recall the three cases discussed just after Theorem 4.2. In the case of
F = τ(V ⊥,M2×2), we see that RF is locally full. On the other hands, if
F = τ(M2×2, V

⊥), then RF is locally full. In the case of F = τ(V ⊥,W⊥),
neither RF nor RF is locally full, and so we see that the converse of Proposition
4.3 does not hold.

5. Examples in 3 ⊗ 3 case

In this section, we give an example of a face of V1 which is not induced by a
face of T. To begin with, we review the duality theory between block matrices
and positive linear maps in matrix algebras.

In [13], we have considered the bi-linear pairing between Mn ⊗Mm and the
space L(Mm,Mn) of all linear maps from Mm into Mn, given by

⟨A, ϕ⟩ = Tr

 m∑
i,j=1

ϕ(eij)⊗ eij

At

 =
m∑

i,j=1

⟨ϕ(eij), aij⟩

for A =
∑m

i,j=1 aij ⊗ eij ∈ Mn ⊗Mm and a linear map ϕ from Mm into Mn,

where the bi-linear form in the right side is given by ⟨X,Y ⟩ = Tr (Y Xt) for
X,Y ∈ Mn. This is equivalent to define

⟨y ⊗ x, ϕ⟩ = Tr (ϕ(x)yt)

for x ∈ Mm and y ∈ Mn. If z = xy∗ is a rank one matrix in Mm×n, then we
have

⟨z̃z̃∗, ϕ⟩ = (ϕ(xx∗)|yy∗),
where ( | ) denotes the usual inner product in the matrix algebra Mn, which is
linear in the first variable and conjugate-linear in the second variable.

We denote by P1 (respectively D) the convex cone of all positive linear maps
(respectively decomposable positive linear maps) from Mm into Mn. In this
duality, the pairs

(V1,P1), (T,D)
are dual each other, in the sense

A ∈ V1 ⇐⇒ ⟨A,ϕ⟩ ≥ 0 for each ϕ ∈ P1,

ϕ ∈ P1 ⇐⇒ ⟨A,ϕ⟩ ≥ 0 for each A ∈ V1,

and similarly for the other pair. This gives us a criterion of separability using
positive linear maps in matrix algebras. See also [18].
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We begin with an example [10] of an indecomposable positive linear map in
M3 which generates an extremal ray. See also [9]. This map is given by

ϕ : [aij ] 7→

 a11 + a33 −a12 −a13
−a21 a22 + a11 −a23
−a31 −a32 a33 + a22

 .

Let F be the dual face of V1 given by this map, that is,

(17) F = {A ∈ V1 : ⟨A,ϕ⟩ = 0}.

By a direct calculation, we see that RF consists of the following rank one
matrices0 0 1

0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

1 α γ
α 1 β

γ β 1

 ,

where αβγ = 1 with |α| = |β| = |γ| = 1. We show that

(18) spanRF = {[aij ] ∈ M3 : a11 = a22 = a33}.

It is clear that every matrix [aij ] in spanRF has the relation a11 = a22 = a33,
and so the dimension of spanRF is at most 7. We see that the following four
matrices1 1 1

1 1 1
1 1 1

 ,

 1 −1 1
−1 1 −1
1 −1 1

 ,

 1 1 −1
1 1 −1
−1 −1 1

 ,

 1 −1 −1
−1 1 1
−1 1 1


together e1,3, e2,1, e3,2 are linearly independent rank one matrices belonging to
RF . This proves the relation (18), and so spanRF is a 7-dimensional subspace
of M3×3.

Next, we show that the set RF τ spans M3. To do this, put

x1 =

1
1
1

 , x2 =

 1
−1
1

 , x3 =

 1
1
−1

 , x4 =

 1
−i
1

 , x5 =

 1
1
−i

 , x6 =

 1
−i
−i


and yi = xi for i = 1, 2, 3, 4, 5, 6. We also define

x7 =

1
0
0

 , x8 =

0
1
0

 , x9 =

0
0
1

 , y7 =

0
0
1

 , y8 =

1
0
0

 , y9 =

0
1
0

 .

Then it is easy to see that xiy
∗
i ∈ RF τ . It remains to show that the set

{xiy
∗
i : i = 1, 2, . . . 9}
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is linearly independent. Suppose that B =
∑9

i=1 aixiy
∗
i = 0, and look at the

entries of the matrix B. Then we have

B11 = a1 + a2 + a3 + a4 + a5 + a6 = 0,

B12 = a1 − a2 + a3 + ia4 + a5 + ia6 = 0,

B22 = a1 + a2 + a3 − a4 + a5 − a6 = 0,

B23 = a1 − a2 − a3 + ia4 + ia5 − a6 = 0,

B31 = a1 + a2 − a3 + a4 + ia5 + ia6 = 0,

B33 = a1 + a2 + a3 + a4 − a5 − a6 = 0.

With this relation, we have ai = 0 for i = 1, 2, . . . , 6, from which we also have
a7 = a8 = a9 = 0.

Although every self-adjoint rank one matrix in spanRF belongs to RF , there
are many rank one matrices in spanRF which do not belong to RF . Actually, a
rank one matrix with zero diagonals is in the space spanRF if and only if it has
only one nonzero column or row. A rank one matrix with nonzero diagonals is
in the space spanRF if and only if it is a scalar multiple of the matrix of the
form 1 a b

1
a 1 b

a
1
b

a
b 1


with nonzero complex numbers a and b. When |a| ̸= 1, above matrix belongs
to spanRF \ RF . Since spanRF τ is the full matrix algebra, we conclude that
the face F is not induced by a face of T by Theorem 4.2.

References

[1] E. Alfsen and F. Shultz, Unique decompositions, faces, and automorphisms of separable
states, J. Math. Phys. 51 (2010), 052201, 13 pp.

[2] W. Arveson, Quantum channels that preserve entanglement, Math. Ann. 343 (2009),
no. 4, 757–771.

[3] R. Augusiak, J. Grabowski, M.Kus, and M. Lewenstein, Searching for extremal PPT
entangled states, Optics Commun. 283 (2010), 805–813.

[4] S. Bandyopadhyay, S. Ghosh, and V. Roychowdhury, Non-full rank bound entangled
states satisfying the range criterion, Phys. Rev. A 71 (2005), 012316, 6 pp.

[5] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to
Quantum Entanglement, Cambridge University Press, 2006.

[6] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal,
Unextendible Product Bases and Bound Entanglement, Phys. Rev. Lett. 82 (1999), no.
26, part 1, 5385–5388.

[7] D. Bruß and A. Peres, Construction of quantum states with bound entanglement, Phys.
Rev. A 61 (2000), no. 3, 030301, 2 pp.

[8] E.-S. Byeon and S.-H. Kye, Facial structures for positive linear maps in two-dimensional
matrix algebra, Positivity 6 (2002), no. 4, 369–380.

[9] S.-J. Cho, S.-H. Kye, and S. G. Lee, Generalized Choi maps in three-dimensional matrix
algebra, Linear Algebra Appl. 171 (1992), 213–224.

[10] M.-D. Choi, Some assorted inequalities for positive linear maps on C∗-algebras, J. Op-
erator Theory. 4 (1980), no. 2, 271–285.



638 HYUN-SUK CHOI AND SEUNG-HYEOK KYE

[11] , Positive linear maps, Operator Algebras and Applications (Kingston, 1980),
pp. 583–590, Proc. Sympos. Pure Math. Vol 38. Part 2, Amer. Math. Soc., 1982.

[12] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible
Product Bases, Uncompletable Product Bases and Bound Entanglement, Comm. Math.

Phys. 238 (2003), no. 3, 379–410.
[13] M.-H. Eom and S.-H. Kye, Duality for positive linear maps in matrix algebras, Math.

Scand. 86 (2000), no. 1, 130–142.

[14] L. Gurvits, Classical complexity and quantum entanglement, J. Comput. System Sci. 69
(2004), no. 3, 448–484.

[15] K.-C. Ha and S.-H. Kye, Construction of entangled states with positive partial transposes
based on indecomposable positive linear maps, Phys. Lett. A 325 (2004), no. 5-6, 315–

323.
[16] , Construction of 3 ⊗ 3 entangled edge states with positive partial transpose, J.

Phys. A 38 (2005), no. 41, 9039–9050.
[17] K.-C. Ha, S.-H. Kye, and Y. S. Park, Entangled states with positive partial transposes

arising from indecomposable positive linear maps, Phys. Lett. A 313 (2003), no. 3,
163–174.

[18] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary
and sufficient conditions, Phys. Lett. A 223 (1996), no. 1-2, 1–8.

[19] P. Horodecki, Separability criterion and inseparable mixed states with positive partial
transposition, Phys. Lett. A 232 (1997), no. 5, 333–339.

[20] P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Operational criterion and construc-

tive checks for the separablity of low rank density matrices, Phys. Rev. A 62 (2000),
032310, 10 pp.

[21] M. Junge, C. Palazuelos, D. Perez-Garcia, I. Villanueva, and M. Wolf, Operator space
theory: a natural framework for Bell inequalities, Phys. Rev. Lett. 104 (2010), no. 17,

170405, 4 pp.
[22] J. K. Korbicz, M. L. Almeida, J. Bae, M. Lewenstein, and A. Acin, Structural approxi-

mations to positive maps and entanglement-breaking channels, Phys. Rev. A 78 (2008),
062105, 17 pp.

[23] S.-H. Kye, Facial structures for unital positive linear maps in the two dimensional
matrix algebra, Linear Algebra Appl. 362 (2003), 57–73.

[24] , Facial structures for decomposable positive linear maps in matrix algebras,
Positivity 9 (2005), no. 1, 63–79.

[25] M. Marciniak, Rank properties of exposed positive maps, preprint, arXiv:1103.3497.
[26] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996), no. 8,

1413–1415.
[27] W. F. Stinespring, Positive functions on C∗-algebras, Proc. Amer. Math. Soc. 6 (1955),

211–216.
[28] E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233–278.
[29] , Decomposable positive maps on C∗-algebras, Proc. Amer. Math. Soc. 86 (1982),

no. 3, 402–404.
[30] , Separable states and positive maps, J. Funct. Anal. 254 (2008), no. 8, 2303–

2312.
[31] S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys.

10 (1976), no. 2, 165–183.

Hyun-Suk Choi

Department of Mathematics
Seoul National University
Seoul 151-742, Korea
E-mail address: spgrass2@snu.ac.kr



FACIAL STRUCTURES FOR SEPARABLE STATES 639

Seung-Hyeok Kye
Department of Mathematics and Institute of Mathematics
Seoul National University
Seoul 151-742, Korea

E-mail address: kye@snu.ac.kr


