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SHIFT GENERATED DUAL FRAMES FOR LOCALLY

COMPACT ABELIAN GROUPS

Ahmad Ahmadi and Ataollah Askari-Hemmat

Abstract. Let G be a metrizable, σ-compact locally compact abelian
group with a compact open subgroup. In this paper we define the Gramian
and the dual Gramian operators for shift invariant subspaces of L2(G)

and we use them to characterize shift generated dual frames for shift in-
variant spaces, which forms a frame for a subspace of L2(G). We present
necessary and sufficient conditions for which standard dual is a unique

SG-dual frame of type I and type II.

1. Introduction and preliminaries

Dual frames are useful tools for construction of series expansion in a Hilbert
space. The coefficients in these series may not be unique. This property has
many applications such as in noise reduction or for the reconstruction from
lossy data [7, 16]. The theory of frames goes back to Duffin and Schaeffer [8].
In this paper we want to characterize shift generated dual frames for shift
invariant spaces which forms a frame for closure of its span. We borrow ideas
of [12] and state them in terms of locally compact abelian (LCA) groups. First,
we will recall some definitions about frames and Riesz basis (for more details
see [6]).

Definition 1.1. Let H be a Hilbert space. A subset F = {fn}n∈N ⊆ H is
called a frame if there exist two numbers 0 < A ≤ B < ∞ such that

(1.1) A ∥f∥2 ≤
∑
n∈N

|⟨f, fn⟩|2 ≤ B ∥f∥2 for all f ∈ H.

If A = B, then F is called a tight frame. The collection F is called a frame
sequence, if F is a frame for span(F ) = M. The set F is called Bessel with
Bessel bound B, if the right-hand inequality in (1.1) holds.
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A subset F = {fn}n∈N ⊆ H is called a Riesz family for span(F ) = M if
there exist two numbers 0 < A ≤ B < ∞ so that

(1.2) A
∑
n∈N

|hn|2 ≤

∥∥∥∥∥∑
n∈N

hnfn

∥∥∥∥∥
2

≤ B
∑
n∈N

|hn|2

for all finitely supported {hn}n∈N ⊆ C. If span(F ) = H, we say F is Riesz
basis. For Bessel collection F = {fn}n∈N, we recall the definitions of analysis
operator TF : M → l2(N) by TF (f) = {⟨f, fn⟩}n∈N, f ∈ M. The synthesis
operator for F is defined by T ∗

F : l2(N) → M by T ∗
F ({cn}nN) =

∑
n∈N cnfn,

{cn}n∈N ∈ l2(N). The operator S = T ∗
FTF : M → M is called the frame

operator. If F is a frame, then S is a bounded and invertible operator from M
onto M. The collection {S−1fn}n∈N is called the standard dual frame of frame
F .

Now, we are ready to recall three types of dual frame which have been defined
in [12].

Definition 1.2. Let F = {fn}n∈N be a frame for the closed subspace M of
the Hilbert space H with inner product denoted by ⟨·, ·⟩.

(1) A dual frame for the frame F is a Bessel collection K = {kn}n∈N ⊆ H
satisfying

∑
n∈N⟨f, kn⟩fn = f , f ∈ M.

(2) A dual frame of type I for the frame F is a dual {kn}n∈N such that
kn ∈ M for each n ∈ N.

(3) A dual frame of type II for the frame F is a dual K = {kn}n∈N with
the property Range(TK) ⊂ Range(TF ), where TF and TK denotes the
analysis operators associated with F and K, respectively.

Throughout this paper we assume that G is an LCA group with a compact
open subgroup H and Haar measure µ such that µ(H) = 1, and the dual group

Ĝ with Haar measure ν such that ν(H⊥) = 1, where H⊥ = {γ ∈ Ĝ : (x, γ) =

1 for all x ∈ H} ⊆ Ĝ and (x, γ) denotes the action of the duality between G

and Ĝ. By Theorem 5.21 of [13], G/H and Ĝ/H⊥ are discrete, thus µG/H and
νĜ/H⊥ are counting measures. For more details about LCA groups we refer to

[9], [13] and [17]. G is metrizable if and only if Ĝ is σ-compact [17]. Also if
G is σ-compact, then G/H is countable. In this paper we consider metrizable,
σ-compact LCA group G. A good example for this situation is Qp, that is the
completion of Q with respect to a certain natural metric topology. One of the
most important application of these groups is in quantum physics [10]. The

Fourier transform ∧ : L1(G) → C0(Ĝ), is defined by

∧(f)(γ) = f̂(γ) =

∫
G

f(x)(x, γ)dµ(x).

The identity
∫
G
f(x)dµ(x) =

∫
G/H

∫
H
f(x+ y)dµ(y)dµG/H(xH) for f ∈ L1(G)

is called Weil’s Formula, which in fact, determines the relation between the
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Haar measures of G and G/H. The multiplication operator on L2(Ĝ) and the
translation and dilation operators on L2(G) have been defined in [3] and [4].

Definition 1.3. Let G be an LCA group with compact open subgroup H, let
D ⊆ Ĝ be the set of coset representatives in Ĝ for the quotient Ĝ/H⊥.

a) The maps θ = θD : Ĝ → D and η = ηD : Ĝ → H⊥ are defined by: θ(γ) =
the unique σγ ∈ D and ηD(γ) = γ − θ(γ).

b) For any fixed [s] ∈ G/H we define the unimodular weight function

ω[s](γ) = (s, ηD(γ)).

c) For any fixed [s] ∈ G/H we define the multiplier m[s] on L2(Ĝ) as multi-

plication by ω[s], that is, for any F ∈ L2(Ĝ), m[s]F (γ) = F (γ)ω[s](γ).

d) For any fixed [s] ∈ G/H and for any f ∈ L2(G), we define τ[s]f to be the

inverse Fourier transform of m[s]f̂ , that is, τ[s]f = f ∗ ω̌[s], where ω̌[s] is the
inverse Fourier transform of ω[s].

The theory of shift invariant spaces in L2(R) was presented by Helson [11]
and characterized in L2(Rn) by Bownik in [5]. In [14], Rn is replaced by
G, where G is an LCA group with a uniform lattice (a cocompact discrete
subgroup). The authors have been defined shift invariant spaces for LCA groups
with a compact open subgroup which we recall that in the following definition.

Definition 1.4. A closed subspace V ⊆ L2(G) is called shift invariant space
with respect to G/H, if f ∈ V implies τ[s]f ∈ V for all [s] ∈ G/H, where
τ[s] is the translation operator defined in Definition 1.3. For countable subset

Φ ⊂ L2(G) we define VΦ = span{τ[s]ϕ : [s] ∈ G/H ϕ ∈ Φ}.

If the shift invariant systemX is a frame forM but is not a Riesz family, then
there exists a dual frame except standard dual for X, which is shift invariant.
We define three types of shift generated dual for shift invariant space X.

Definition 1.5. Let X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} be a frame for closed sub-

space VΦ ⊂ L2(G). Let R : Φ → L2(G) be a mapping and Y = {τ[s]Rϕ; [s] ∈
G/H, ϕ ∈ Φ}.

(i) We say that Y is shift generated (SG)-dual frame for X if it is a dual
frame for X as in Definition 1.2(1).

(ii) We say that Y is shift generated (SG)-dual frame of type I (resp. type
II) for X, if it is a dual frame for X as in Definition 1.2(2) (resp. (3)).

We consider l2⊥ := l2(Ĝ/H⊥) and define the Hilbert space

L2
∗ := L2(H⊥, l2⊥) = {Φ : H⊥ → l2⊥ ;

∫
H⊥

∥Φ(γ)∥2l2⊥ dν(γ) < ∞},

with inner product ⟨f, g⟩ =
∫
H⊥⟨f(ξ), g(ξ)⟩l2⊥dν(ξ), and norm

∥f∥L2
∗
=

∫
H⊥

∥f(ξ)∥2l2⊥ dν(ξ).
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Also, the mapping 𝟋 : L2(G) → L2
∗ defined by (𝟋g)(γ) = {ĝ(γ+η)}[η]∈Ĝ/H⊥ is

an isometric isomorphism between L2(G) and L2
∗ (for more details see [2, 15]).

Definition 1.6. A range function is a mapping

J : H⊥ → {closed subspaces of l2⊥}.
The mapping J is called measurable if the orthogonal projections

P (ξ) : l2⊥ → J(ξ) for a.e. ξ ∈ H⊥

are weakly measurable, i.e., ξ → ⟨P (ξ)a, b⟩ are measurable for all a, b ∈ l2⊥.

Proof of Theorems 1.7 and 1.8 are similar to proof of Theorems 3.1 of [15]
and 2.3 of [5] respectively which have been proved by authors in [2].

Theorem 1.7. Let G be an LCA group with compact open subgroup H. A
closed subspace V ⊆ L2(G) is shift invariant, with respect to the lattice induced
by G/H, if and only if

(1.3) V = {f ∈ L2(G) 𝟋f(ξ) ∈ J(ξ) for a.e. ξ ∈ H⊥},
where J is a measurable range function. Moreover, if VΦ is generated by some
countable set Φ ⊂ L2(G), then J(ξ) = span{𝟋ϕ(ξ);ϕ ∈ Φ}.

Theorem 1.8. Suppose G is a metrizable LCA group with a compact open
subgroup H and Φ ⊂ L2(G) is a countable set. Then {τ[s]ϕ : ϕ ∈ Φ, [s] ∈ G/H}
is a frame (Riesz family) for VΦ with bounds A and B if and only if {𝟋ϕ(ξ) :
ϕ ∈ Φ} is a frame (Riesz family) for J(ξ) a.e. ξ ∈ H⊥.

This paper is organized in three sections, this section consists of definitions
and theorems that we need. In Section 2, we define the Gramian and the dual
Gramian operators for shift invariant subspaces of L2(G) and using them to
characterize frame and Riesz basis. Finally, in Section 3, we characterize SG-
dual frames and we state necessary and sufficient conditions for standard dual
to be unique dual of type I or type II.

2. The Gramian operator

In this section we define the Gramian operator and its dual for shift invariant
subspaces of L2(G), where G is an LCA group with a compact open subgroup.
For a countable subset Φ ⊂ L2(G) we assume that X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈
Φ} is a shift invariant subspace of L2(G). Fix ξ ∈ H⊥, the pre-Gramian
operator K(ξ) : l2(Φ) → l2⊥, is defined by K(ξ)({cϕ}ϕ∈Φ) =

∑
ϕ∈Φ cϕ𝟋ϕ(ξ).

If X has Bessel property with Bessel bound B, then K(ξ) is bounded and

∥K(ξ)∥2 ≤ B, and its adjoint, K∗(ξ) : l2⊥ → l2(Φ), is given by K∗(ξ)(b) =
{⟨b,𝟋ϕ(ξ)⟩}ϕ∈Φ.

Let ξ ∈ H⊥, we define the Gramian operator, G(ξ) : l2(Φ) → l2(Φ) by

G(ξ) = K∗(ξ)K(ξ) and the dual Gramian operator, G̃(ξ) : l2⊥ → l2⊥ by G̃(ξ) =
K(ξ)K∗(ξ).
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Thus the entries of the Gramian operator and the dual Gramian operator
are define by

Gϕ1,ϕ2(ξ) =
∑

[η]∈Ĝ/H⊥

ϕ̂1(ξ + η)ϕ̂2(ξ + η) = {⟨𝟋ϕ1(ξ),𝟋ϕ2(ξ)⟩}ϕ1,ϕ2∈Φ,

and G̃[η1],[η2](ξ) =
∑
ϕ∈Φ

ϕ̂(ξ + η1)ϕ̂(ξ + η2).

Remark 2.1. (1) By Weil’s Formula and Cauchy inequality we have∫
H⊥

∣∣∣∣∣∣
∑

[η]∈Ĝ/H⊥

ϕ̂i(ξ + η)ϕ̂j(ξ + η)

∣∣∣∣∣∣ dν(ξ)
≤

∫
H⊥

∑
[η]∈Ĝ/H⊥

∣∣∣ϕ̂i(ξ + η)
∣∣∣2 dν(ξ)

 1
2
∫

H⊥

∑
[η]∈Ĝ/H⊥

∣∣∣ϕ̂j(ξ + η)
∣∣∣2 dν(ξ)

 1
2

= ∥ϕi∥ ∥ϕj∥ < ∞.

Thus the entries G(ξ) are well defined.

(2) If
∑

ϕ∈Φ

∣∣∣ϕ̂(ξ + η)
∣∣∣2 < ∞, then the entries of G̃(ξ) are well defined.

(3) We have

(2.1) ∥G(ξ)∥ = ∥K∗(ξ)∥2 for a.e. ξ ∈ H⊥.

(4) For a.e. ξ ∈ H⊥, G(ξ) = 0 if and only if J(ξ) = 0. Indeed, G(ξ) = 0
if and only if Gϕ1,ϕ2(ξ) = 0 for all ϕ1, ϕ2 ∈ Φ. Now if ϕ1 = ϕ2 = ϕ

we have
∑

[η]∈Ĝ/H⊥

∣∣∣ϕ̂(ξ + η)
∣∣∣2 = 0. Thus ϕ = 0 for all ϕ ∈ Φ, which

shows that J(ξ) = 0 for a.e. ξ ∈ H⊥. Conversely if J(ξ) = 0, then
𝟋ϕ(ξ) = 0 for all ϕ ∈ Φ and for a.e. ξ = H⊥. Thus G(ξ) = 0. By

similar way, for a.e. ξ ∈ H⊥, G̃(ξ) = 0 if and only if J(ξ) = 0.

In the following theorem we use the Gramian operator and state a necessary
and sufficient condition for the shifts of a countable subset of L2(G) has Bessel
property.

Theorem 2.2. The system X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} to have the Bessel
property with Bessel constant B if and only if esssupξ∈H⊥ ∥G(ξ)∥ ≤ B.

Proof. The set {𝟋τ[s]ϕ(ξ) : ϕ ∈ Φ} is a Bessel family for J(ξ) a.e. ξ ∈ H⊥ if

and only if ∥K∗(ξ)∥2 ≤ B. By Theorem 1.8 and (2.1), the proof is completed.
□

In Theorem 2.5, using the Gramian operators we establish necessary and
sufficient conditions that X = {τ[s]ϕ; ϕ ∈ Φ, [s] ∈ G/H} to be a frame. For
this we need the following lemma. We denote Φ×G/H = I, where Φ is an at
most countable subset of L2(G).
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Lemma 2.3. Let R : H⊥ → B(l2(Φ)) be a weakly measurable operator such
that

∫
H⊥ |⟨R(ξ)δϕ1 , δϕ2⟩| dν(ξ) < ∞, where Φ is an at most countable subset

of L2(G) and {δϕ}ϕ∈Φ is the standard orthonormal basis for l2(Φ). Then the
following are equivalent:

(i) The integral
∫
H⊥

∑
ϕ1,ϕ2∈Φ′⟨R(ξ)δϕ1 , δϕ2⟩mϕ1(ξ)mϕ2(ξ)dν(ξ) ≥ 0 holds

for any finite set Φ′ ⊂ Φ and any trigonometric polynomial

mϕ(ξ) =
∑

[s]∈G/H

c[s],ϕω[s](ξ)

with finite nonzero coefficients c[s],ϕ.

(ii) R(ξ) ≥ 0 for a.e. ξ ∈ H⊥.

Proof. If x(ξ) =
∑

ϕ∈Φ′ mϕ(ξ)δϕ, then

(2.2)
∑

ϕ1,ϕ2∈Φ′

⟨R(ξ)δϕ1 , δϕ2⟩mϕ1(ξ)mϕ2(ξ) = ⟨R(ξ)x(ξ), x(ξ)⟩.

By (2.2), (ii) implies (i).
Conversely, let (i) holds. If (ii) fails, then there exists a measurable subset

E of H⊥ such that ν(E) > 0 and ⟨R(ξ)Y, Y ⟩ < 0, where Y ∈ l2(Φ), with only
finitely many components. Also we assume that {yϕ}ϕ∈Φ is dense in l2(Φ) (note
that l2(Φ) is separable) such that for each ϕ, ⟨yϕ, δϕi⟩ = 0 except for finitely
many ϕ ∈ Φ. For proving R(ξ) ≥ 0, we must show that ⟨R(ξ)yϕ, yϕ⟩ ≥ 0 for
a.e. ξ ∈ H⊥. By Luzin’s Theorem [18], there exists a uniformly bounded
sequence of trigonometric polynomials {hj}j≥1 that is pointwise convergence
to the characteristic function χE on H⊥. Then we have

(2.3)

∫
H⊥

⟨R(ξ)u(ξ), u(ξ)⟩dν(ξ) =
∫
E

⟨R(ξ)Y, Y ⟩dν(ξ) < 0,

where u(ξ) = χ(ξ)Y ∈ l2(Φ). Set uj = hj(ξ)Y ∈ l2(Φ). Thus

(2.4)

∫
H⊥

⟨R(ξ)uj(ξ), uj(ξ)⟩dν(ξ) =
∫
H⊥

|hj |2 ⟨R(ξ)Y, Y ⟩dν(ξ),

by (2.2), Lebesgue dominated convergence Theorem implies that (2.4) con-
verges to left-hand side of (2.3). Therefore if j → ∞, then (2.4) is negative.

Define finite subset Φ1 of Φ by {ϕ ∈ Φ; yϕ ̸= 0} and mj
ϕ = yϕhj(ξ), then

by (2.4) we have∫
H⊥

∑
ϕ1,ϕ2∈Φ1

⟨R(ξ)δϕ1 , δϕ2⟩m
j
ϕ1
(ξ)mj

ϕ2
(ξ)dν(ξ) < 0.

This is a contradiction with (i), and the proof is completed. □

Theorem 2.4. We assume that X = {τ[s]ϕ; ϕ ∈ Φ, [s] ∈ G/H}. Then the
following are equivalent:

(1) The system X is a frame with constants A,B for its closed linear span
VΦ.
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(2) AG(ξ) ≤ G2(ξ) ≤ BG(ξ) for a.e. ξ ∈ H⊥.

(3) AG̃(ξ) ≤ G̃2(ξ) ≤ BG̃(ξ) for a.e. ξ ∈ H⊥.

Proof. We must show that {τ[s]ϕ; [s] ∈ G/H} is a frame for dense subset M0

of VΦ (see Lemma 5.1.7 of [6]). If f ∈ M0, then f =
∑

([s],ϕ)∈I c[s],ϕτ[s]ϕ, where

only finitely many of c[s],ϕ ̸= 0. Thus f̂(ξ) =
∑

([s],ϕ)∈I c[s],ϕω[s](ξ)ϕ̂(ξ) =∑
ϕ∈Φ mϕ(ξ)ϕ̂(ξ), where mϕ is defined in Lemma 2.3. Let (1) holds by Theo-

rem 2.2, esssup ∥G(ξ)∥ ≤ B. Thus G(ξ) ∈ B(l2(Φ)). With a simple computa-
tion (for more details see [2]) we have∑

ϕ∈Φ

∑
[s]∈G/H

∣∣⟨τ[s]ϕ, f⟩∣∣2 =
∑
ϕ1∈Φ

∫
H⊥

∣∣∣⟨𝟋ϕ1(ξ),𝟋f(ξ)⟩l2⊥
∣∣∣2 dν(ξ).

Then,

(2.5)

∑
ϕ1∈Φ

∫
H⊥

∣∣∣⟨𝟋ϕ1(ξ),𝟋f(ξ)⟩l2⊥
∣∣∣2 dν(ξ)

=
∑
ϕ1∈Φ

∫
H⊥

∣∣∣∣∣∣
∑
ϕ2∈Φ

mϕ2(ξ)⟨𝟋(ϕ2)(ξ),𝟋ϕ1(ξ)⟩

∣∣∣∣∣∣
2

dν(ξ)

=

∫
H⊥

∑
ϕ1,ϕ2,ϕ3∈Φ

G∗
ϕ1,ϕ2

(η)Gϕ2,ϕ3(η)mϕ1(η)mϕ2(η)dν(η).

Since G is self-adjoint then the right-hand of (2.5) is equal to

(2.6)

∫
H⊥

∑
ϕ1,ϕ2∈Φ

⟨G2(η)δϕ1 , δϕ2⟩mϕ1(η)mϕ2(η)dν(η).

Now, Weil’s Formula and Plancherel Theorem imply that

∥f∥2 =
∥∥∥f̂∥∥∥2

=

∫
Ĝ

∣∣∣∣∣∣
∑
ϕ∈Φ

mϕ(ξ)ϕ̂(ξ)

∣∣∣∣∣∣
2

dν(ξ)

=

∫
H⊥

∫
Ĝ/H⊥

∣∣∣∣∣∣
∑
ϕ∈Φ

mϕ(ξ)ϕ̂(ξ)

∣∣∣∣∣∣
2

dν(ξ)

=

∫
H⊥

∑
ϕ1,ϕ2∈Φ

∑
[η]∈Ĝ/H⊥

ϕ̂1(η + ξ)ϕ̂2(η + ξ)mϕ1(ξ)mϕ2(ξ)dν(ξ)

=

∫
H⊥

∑
ϕ1,ϕ2∈Φ

G(ξ)mϕ1(ξ)mϕ2(ξ)dν(ξ).

(2.7)
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Using pervious lemma, (2.6) and (2.7) we have (2) is equivalent to (1). First we
assume that R(ξ) = BG(ξ)−G2(ξ) and second R(ξ) = G2(ξ)− AG(ξ). Since

G(ξ) = K∗(ξ)K(ξ) and G̃(ξ) = K(ξ)K∗(ξ), then K∗(ξ)K(ξ)K∗(ξ)K(ξ) ≥
AK∗(ξ)K(ξ), which implies that G̃3(ξ) ≥ AG̃2(ξ). Therefore, it shows that (2)
and (3) are equivalent. □

The following theorems yield directly from definition of the pre-Gramian
operator and the Gramian operator. The next theorem present a necessary
and sufficient condition that the shifts of a countable subset of L2(G) is a
frame for L2(G).

Theorem 2.5. Let X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} be a frame sequence with
bounds A and B. Then the following are equivalent:

(1) X is a frame for L2(G).

(2) G̃(ξ) (K∗(ξ)) is injective for a.e. ξ ∈ H⊥.

(3) AI ≤ G̃(ξ) ≤ BIfor a.e. ξ ∈ H⊥.

Proof. By definitions of the dual Gramian operator, G̃(ξ) = K∗(ξ)K(ξ) and
the pre-Gramian operator K we have

⟨G̃(ξ)f, f⟩ = ⟨K(ξ)f,K(ξ)f⟩ =
∑

(ϕ,[s])∈I

∣∣< τ[s]ϕ, f >
∣∣2 .

So (1), (2) and (3) are equivalent. □

Example 2.1. For a prime number p. Let G = Qp be the p-adic group with

compact open subgroup H = Zp. The group G is self dual [9] thus Ĝ = Qp

and H⊥ = Zp. For σ ∈ D, ϕ̂σ = 1σ+Zp
and then G̃(ξ) = I. By Theorem 2.5,

X = {τ[s]ϕσ; [s] ∈ Qp/Zp, σ ∈ D} forms a frame for L2(Qp).

In the following theorem we state a necessary and sufficient condition for
X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} to be a Riesz basis.

Theorem 2.6. Let X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} be a frame sequence with
bounds A and B. Then the following are equivalent:

(1) X is a Riesz basis for VΦ.
(2) G(ξ) (K(ξ)) is injective for a.e. ξ ∈ H⊥.
(3) AI ≤ G(ξ) ≤ BI for a.e.ξ ∈ H⊥.

Proof. By definitions of G and K∗ we have

⟨G(ξ)c, c⟩ = ⟨K∗(ξ)c,K∗(ξ)c⟩ =

∥∥∥∥∥∥
∑

ϕ,[s]∈I

cϕ,[s]𝟋τ[s]ϕ(ξ)

∥∥∥∥∥∥
2

.

Thus (1), (2) and (3) are equivalent. □
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Example 2.2. We assume that G = Q3 and H = Z3. Also Ĝ = Q3 and H⊥ =

Z3 (see Example 2.1). If ϕ̂1 = 1Z3∪(1+Z3) and ϕ̂2 = 12+Z3 , then G(ξ) = ( 2 0
0 1 ).

By Theorem 2.6, X = {τ[s]ϕ1, τ[s]ϕ2; [s] ∈ Q3/Z3} forms a Riesz basis for
VΦ = spanX.

In the following example we present a collection which is a frame sequence
but it is NOT a Riesz basis for closure of its span.

Example 2.3. Consider the 3-adic group Q3 with compact open subgroup Z3.
If V1 = 3Z3, V2 = 1+3Z3 and V3 = 2+3Z3, then {Vi; i = 1, 2, 3} is a partition

for Z3 [3]. Let ϕ̂1 = 1V1 and ϕ̂2 = 1V3 . Thus

G(ξ) =

(
1 0
0 0

)
for ξ ∈ 3Z3, G(ξ) =

(
0 0
0 0

)
for ξ ∈ 1 + 3Z3,

G(ξ) =

(
0 0
0 1

)
for ξ ∈ 2 + 3Z3.

Since ν(1 + 3Z3) = 1, then the Gramian operator G(ξ) is not injective. By
Theorem 2.6, {τ[s]ϕ1, τ[s]ϕ2; [s] ∈ Q3/Z3} is not Riesz basis for VΦ.

3. Shift generated dual frames in L2(G)

Our main goal in this section is to generalize a characterization of SG-dual
frame for shift invariant subspaces of L2(G) by the Gramian operators and
range functions. First, we need to establish the following lemma. The function
h ∈ L2(G) is called D-periodic function whenever f(ξ + η) = f(ξ), η ∈ D and
for a.e. ξ ∈ H⊥. For example, the function ω[s] is a D-periodic function.

Lemma 3.1. Let mϕ be a measurable D-periodic function for ϕ ∈ Φ such that∫
H⊥

∑
ϕ∈Φ |mϕ(ξ)|2 dν(ξ) < ∞. Then for X = {τ[s]ϕ; ϕ ∈ Φ, [s] ∈ G/H} with

the Bessel property, the following are equivalent:
(a)

∑
ϕ∈Φ

∫
H⊥⟨𝟋f(ξ),𝟋ϕ(ξ)⟩mϕ(ξ)dν(ξ) = 0 for all f ∈ VΦ;

(b) For a.e. ξ ∈ H⊥, we have
∑

ϕ∈Φ⟨𝟋f(ξ),𝟋ϕ(ξ)⟩mϕ(ξ)dν(ξ) = 0 for all
f ∈ VΦ.

Proof. Let (a) holds. If {e[η]}[η]∈Ĝ/H⊥ is the standard orthonormal basis for

l2⊥, then 𝟋f(ξ) =
∑

[η]∈Ĝ/H⊥ P (ξ)e[η], where P (ξ) : l2⊥ → J(ξ) is an orthogonal

projection and J(ξ) is a range function. Thus∑
ϕ∈Φ

⟨
∑

[η]∈Ĝ/H⊥

P (ξ)e[η],𝟋ϕ(ξ)⟩ =
∑
ϕ∈Φ

⟨𝟋f(ξ),𝟋ϕ(ξ)⟩ = 0.

Now we assume that (b) fails. Then there exists a measurable subset E of H⊥

such that h(ξ) =
∑

[η]∈Ĝ/H⊥⟨P (ξ)e[η],𝟋ϕ(ξ)⟩mϕ(ξ) ̸= 0. Therefore, we have

the subsets

E1 = {ξ ∈ E; Reh(ξ) > 0}, E2 = {ξ ∈ E; Imh(ξ) > 0},
E3 = {ξ ∈ E; Reh(ξ) < 0}, E4 = {ξ ∈ E; Imh(ξ) < 0}.
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Set 𝟋f1 = χE1e[η], then f1 ∈ VΦ and
∑

ϕ∈Φ

∫
H⊥⟨𝟋f1(ξ),𝟋ϕ(ξ)⟩mϕ(ξ)dν(ξ) ̸=

0. That is a contradiction and proof is completed. It is clear that (b) implies
(a). □

In the following theorems and corollary we characterize the shift generated
dual frame for shift invariant space which forms a frame.

Theorem 3.2. We assume that X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} is a frame

for closed subspace VΦ ⊆ L2(G) and R : Φ → L2(G) is a mapping that the
collection Y = {τ[s]Rϕ; [s] ∈ G/H, ϕ ∈ Φ} is Bessel, then Y is a SG-dual

frame for X if and only if the collection Ỹ = {𝟋Rϕ(ξ)}ϕ∈Φ is a SG-dual frame

for X̃ = {𝟋ϕ(ξ)}ϕ∈Φ.

Proof. By Plancherel Theorem and Weil’s Formula we have

∥f∥2 =
∥∥∥f̂∥∥∥2 =

∫
Ĝ

∣∣∣f̂(ξ)∣∣∣2 dν(ξ) = ∫
H⊥

∑
[η]∈Ĝ/H⊥

∣∣∣f̂(ξ + η)
∣∣∣2 dν(ξ).

Let Ỹ be a SG-dual frame for X̃, thus for a.e. ξ ∈ H⊥,∑
ϕ∈Φ

⟨𝟋f(ξ),𝟋ϕ(ξ)⟩⟨𝟋g(ξ),𝟋Rϕ(ξ)⟩ = ⟨𝟋f(ξ),𝟋g(ξ)⟩.

We must show that
∑

(ϕ,[s])∈I⟨f, τ[s]ϕ⟩⟨g, τ[s]Rϕ⟩ = ⟨f, g⟩.
For f ∈ VΦ,∑
(ϕ,[s])∈I

⟨f, τ[s]ϕ⟩⟨g, τ[s]Rϕ⟩

=
∑

(ϕ,[s])∈I

(∫
Ĝ

f̂(ξ)ω[s](ξ)ϕ̂(ξ)dν(ξ)×
∫
Ĝ

ĝ(ξ)ω[s](ξ)R̂ϕ(ξ)dν(ξ)

)

=
∑

(ϕ,[s])∈I

∫
H⊥

∑
[η]∈Ĝ/H⊥

f̂(ξ + η)ω[s](ξ) ̂ϕ(ξ + η)dν(ξ)

×
∫
H⊥

∑
[η]∈Ĝ/H⊥

ĝ(ξ + η)ω[s](ξ) ̂Rϕ(ξ + η)dν(ξ)


=

∑
ϕ∈Φ

(∫
H⊥

⟨𝟋f(ξ),𝟋ϕ(ξ)⟩ω[s](ξ)dν(ξ)×
∫
H⊥

⟨𝟋g(ξ),𝟋Rϕ(ξ)⟩ω[s](ξ)dν(ξ)

)
=

∑
ϕ∈Φ

̂⟨𝟋f(ξ),𝟋ϕ(ξ)⟩ ̂⟨𝟋g(ξ),𝟋Rϕ(ξ)⟩,

the Parseval’s identity [18] implies that∑
ϕ∈Φ

̂⟨𝟋f(ξ),𝟋ϕ(ξ)⟩ ̂⟨𝟋g(ξ),𝟋Rϕ(ξ)⟩ = ⟨𝟋f(ξ),𝟋g(ξ)⟩L2
∗
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=

∫
H⊥

⟨𝟋f(ξ),𝟋g(ξ)⟩l2⊥dν(ξ).

By Weil’s Formula and Plancherel Theorem we have∫
H⊥

⟨𝟋f(ξ),𝟋g(ξ)⟩dν(ξ) =
∫
H⊥

∑
[η]∈Ĝ/H⊥

ˆf(ξ + η) ˆg(ξ + η)dν(ξ)

=

∫
Ĝ

ˆf(ξ) ˆg(ξ)dν(ξ) = ⟨f̂ , ĝ⟩L2(Ĝ) = ⟨f, g⟩L2(G).

Therefore, Y is a SG-dual frame for X. For the converse, let Y be SG-dual
frame for X, then ∑

(ϕ,[s])∈I

⟨f, τ[s]ϕ⟩⟨g, τ[s]Rϕ⟩ = ⟨f, g⟩.

We must show that for all f, g ∈ VΦ

(3.1)
∑
ϕ∈Φ

⟨𝟋f(ξ),𝟋ϕ(ξ)⟩⟨𝟋g(ξ),𝟋Rϕ(ξ)⟩ = ⟨𝟋f(ξ,𝟋g(ξ))⟩ for a.e. ξ ∈ H⊥.

Let (3.1) fails. Then there exists a measurable subset E1 of H⊥ with ν(E1) > 0

and [η1], [η2] ∈ Ĝ/H⊥, such that for a.e. ξ ∈ E1,

F(ξ) = (
∑
ϕ∈Φ

⟨P (ξ)e[η1],𝟋ϕ(ξ)⟩⟨P (ξ)e[η2],𝟋Rϕ(ξ)⟩ − ⟨P (ξ)e[η1], P (ξ)e[η2]⟩) ̸= 0.

Thus one of the following inequality holds

Re(F(ξ)) > 0, Re(F(ξ)) < 0, Im(F(ξ)) > 0, Im(F(ξ)) < 0 for ξ ∈ E1.

It is easy to show that all of these cases do not hold [12]. Therefore proof is
completed. □

By using Theorem 3.2 and Theorem 2.5, we have the following corollary.

Corollary 3.3. Retain the assumption of pervious theorem. Then, Y is a SG-

dual frame of type I for X if and only if the collection Ỹ = {𝟋Rϕ(ξ)}ϕ∈Φ is a

SG-dual frame of type I frame for X̃ = {𝟋ϕ(ξ)}ϕ∈Φ.

We use the idea of Lemma 2 of [12] and Lemma 3.1, to prove following
theorem.

Theorem 3.4. Consider the assumption of Theorem 3.2. Then, Y is a SG-

dual of type II for X if and only if the collection Ỹ = {𝟋Rϕ(ξ)}ϕ∈Φ is a

SG-dual frame of type II for X̃ = {𝟋ϕ(ξ)}ϕ∈Φ.

Theorem 3.5 provides us necessary and sufficient conditions for standard
dual X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} to be a unique SG-dual frame of type I
or type II, in terms of the Gramian operator and range functions. For proof of
the following theorem we refer to Theorems 6 and 7 of [12].
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Theorem 3.5. We assume that X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} is a frame

with frame bounds A and B for the closed subspace VΦ ⊆ L2(G). Then the
following are equivalent.

(1) The standard dual is the unique SG-dual frame of type I (resp. type II)
for X.

(2) We have either J(ξ) = 0 or {𝟋ϕ(ξ)}ϕ∈Φ is a Riesz basis for J(ξ) (a
frame for L2(G)) for a.e. ξ ∈ H⊥.

(3) We have either G(ξ) = 0 (resp. G̃(ξ) = 0) or AI ≤ G(ξ) ≤ BI (resp.

AI ≤ G̃(ξ) ≤ BI) for a.e. ξ ∈ H⊥.
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