탈휘발 예측 코드를 활용한 탈휘발 및 촤반응 모델 평가

Evaluation of the Structural Coal Combustion Model in a Swirling Pulverized Coal Combustor

  • 정대로 (포항공과대학교 기계공학과) ;
  • 한가람 (포항공과대학교 기계공학과) ;
  • 허강열 (포항공과대학교 기계공학과) ;
  • 박호영 (한국전력연구원 그린에너지연구소)
  • 투고 : 2012.05.18
  • 심사 : 2012.06.01
  • 발행 : 2012.06.30

초록

In this study, pre-processor code based on structural behavior of coal is applied to predict yields, pyrolysis rate and compositions of volatile and char. These parameters are used in the devolatilization and char burnout sub-models as user-defined functions of commercial CFD code. The predicted characteristics of these sub-models are compared with those employing the conventional model based on experiment and validated against the measurement of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. And the influence of the turbulence-chemistry interaction on pulverized coal combustion is analyzed.

키워드

참고문헌

  1. 에너지경제연구원, "세계 석탄 수급 및 2010년 연료탄 가격 전망 : 국제 에너지 시황 분석", 2009.
  2. 채태영, 박상현, 홍재현, 양원, 이상훈, 류창국, "전산유동해석을 이용한 100 MWe급 석탄 순산소 연소 실증 보일러의 설계 및 운전조건 평가", 한국연소학회지, Vol. 16, 2011, pp. 1-8.
  3. A. Williams, R. Backreedy, R. Habib, J. M. Jones, and M. Pourkashanain, "Modelling coal combustion: the current position", Fuel, Vol. 81, 2002, pp. 605-618. https://doi.org/10.1016/S0016-2361(01)00158-2
  4. S. Niksa, "FLASHCHAIN Theory for Rapid Coal Devolatilization Kinetics. 3. Modeling the Behavior of Various Coals", Energy and Fuels. Vol 5, 1991, pp. 673-683. https://doi.org/10.1021/ef00029a008
  5. R. Weber, J. Dugue, A. Sayre, A. A. F. Peters and B. M. Visser, "Measurements and Computations of Quarl Zone Flow Field and Chemistry in a Swirling Pulverized Coal Flame", IFRF Doc. No. F36/y/20, 1992.
  6. A. A. F. Peters and R. Weber, "Mathematical Modeling of a 2.4 MW Swirling Puliverized Coal Flame", Combustion Science and Technology, Vol, 122, 1997, pp. 131-182. https://doi.org/10.1080/00102209708935608
  7. M. Ilbas, "The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling", International Journal of Hydrogen Energy. Vol. 30, 2005, pp. 1113-1126. https://doi.org/10.1016/j.ijhydene.2004.10.009
  8. S. Badzioch and P.G.W. Hawksiey, "Kinetics of Thermal Decomposition of Pulverized Coal Particles", Ind. Eng. Chem. Process Des. Dev., Vol. 9, 1970, pp. 521-530.
  9. M. A. Field, "Rate of Combustion of Size-graded Fractions of Char from a low-rank Coal between 1,200 K and 2,000 K", Combustion and Flame, 1969, Vol 13, pp. 237-252. https://doi.org/10.1016/0010-2180(69)90002-9
  10. PC Coal Lab Version 4.1, User Guide and Tutorial
  11. S. Niksa, G. Liu, and R. H. Hurt, "Coal convertsion submodels for design applications at elevated pressures. Part 1. devolatilization and char oxidation", Progress in Energy and Combustion Science, Vol. 29, 2003, pp. 425-477. https://doi.org/10.1016/S0360-1285(03)00033-9
  12. N. Hashimoto, R. Kurose, H. Tsuji, and H. Shirai, "A Numerical Analysis of Pulverized Coal Combustion in a Multiburner Furnace", Energy & Fuels, Vol. 21, 2007, pp. 1950-1958. https://doi.org/10.1021/ef070151o
  13. D. Fortsch, F. Kluger, U. Schnell, H. Spliethoff, and K. R. G. Hein, "A Kinetic Model for the Prediction of NO Emissions from Staged Combustion of Pulverized Coal", Twenty-seventh Symposium (International) on Combustion/The Combustion Institute, 1998, pp. 3037-3044.
  14. W. P. Jones and R. P. Lindstedt, "Global Reaction Schemes for Hydrocarbon Combustion", Combustion and Flame, Vol. 73, 1988, pp. 233-249. https://doi.org/10.1016/0010-2180(88)90021-1
  15. C. K. Westbrook and F. L. Dryer, "Chemical Kinetic Modeling of Hydrocarbon Combustion", Prog. Energy Combust. Sci, Vol. 10, 1984, pp. 1-57. https://doi.org/10.1016/0360-1285(84)90118-7