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SOCIAL EQUILIBRIUM IN A GENERALIZED NASH GAME

WITH THE AFFINE CONDITION

Won Kyu Kim

Abstract. In this paper, we will prove a social equilibrium existence the-
orem of a generalized Nash game with affine constraint correspondences
which is comparable with Nash’s equilibrium existence theorem in several

aspects.

1. Introduction

In mathematical economics, showing the existence of equilibrium is the main
problem of investigating various kind of economic models. In general economic
models, convexity assumptions are essential and basic to apply the well-known
fixed point theorems as in [1-7]. Until now, there have been a number of
generalized convex conditions investigated by several authors, and using those
concepts, there have been numerous equilibrium existence theorems in gener-
alized games. Recently, using Himmelberg’s fixed point theorem, Kim and Lee
[4] proved a new existence theorem of Nash equilibrium in a noncompact gen-
eralized game which generalizes equilibrium existence theorems due to Nash
[6], and Nikaido and Isoda [7] in several aspects.

In this paper, we will prove a new social equilibrium existence theorem
in a generalized Nash game with affine constraint correspondences which is
comparable with an equilibrium existence theorem due to Nash [6] in several
aspects.

2. Preliminaries

Let I be a (possibly uncountable) set of players, and let Xi be a nonempty
topological space as an action space for each i ∈ I, and denote X−i :=∏

j∈I\{i} Xj . For an action profile x = (xi)i∈I ∈ X = Πi∈IXi, we shall write

x−i = (x1, . . . , xi−1, xi+1, . . .) ∈ X−i; and if xi ∈ Xi, x−i ∈ X−i, we simply
write a typical strategy profile

x = (x−i, xi) := (x1, . . . , xi−1, xi, xi+1, . . .) ∈ X−i ×Xi.
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We now introduce some general notions and terminologies in generalized
non-cooperative strategic games. A generalized Nash game (or social system) is
an ordered triples Γ = (Xi;Ti, fi)i∈I where for each player i ∈ I, the nonempty
set Xi is a player’s pure strategy space, Ti : X → 2Xi is a player’s constraint
correspondence, and fi : X → R is a player’s payoff (or utility) function.
The set X, joint strategy space, is the Cartesian product of the individual
strategy spaces, and the element of Xi is called a strategy. Then, a strategy
tuples x̄ = (x̄i)i∈I ∈ X is called the social equilibrium (or generalized Nash
equilibrium) for the game Γ if the following system of inequalities holds: for
each i ∈ I,

x̄i ∈ Ti(x̄) and fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for each xi ∈ Ti(x̄).

When the set of players is a finite set I = {1, . . . , n}, a generalized Nash
game Γ is called a generalized N -person game.

Throughout this paper, all topological spaces are assumed to be Hausdorff,
and for the other standard notations and terminologies, we shall refer to [3, 4].

3. Social equilibrium with affine constraint correspondences

In a generalized Nash game with infinite players, we recall that the set of all
real-valued payoff functions {fi | i ∈ I} satisfy the unconditional summability
[3] if any rearrangement

∑
j∈I fj(x−j , xj) of the infinite sum

∑
i∈I fi(x−i, xi)

converges to the same real value. Indeed, the unconditional summability should
be needed for a generalized Nash game with infinite players, and it should be
noted that {fi | i ∈ I} is unconditionally summable if the sum

∑
i∈I fi(x−i, xi)

converges absolutely. From now on, we may assume that the set of all real-
valued payoff functions {fi | i ∈ I} satisfies the unconditionally summablity in
a generalized Nash game Γ.

For the social equilibrium in the generalized Nash game Γ having the un-
conditionally summablity, let us define the total sum of payoff function H :
X ×X → R associated with the strategic game Γ as follows:

H(y, x) :=
∑

i∈I fi(x−i, yi) for each x, y ∈ X =
∏

i∈I Xi.

Then we can obtain the following equivalences which generalizes the theorems
due to Lu [5], and Nikaido and Isoda [7]:

Lemma 1. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game of normal form
where I be a (possibly uncountable) set of players. Then the followings are
equivalent:

(1) x̄ ∈ X =
∏

i∈I Xi is a social equilibrium for Γ;
(2) for each i ∈ I, x̄i ∈ Ti(x̄), and fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for all xi ∈ Ti(x̄);
(3) for each i ∈ I, x̄i ∈ Ti(x̄), and H(x̄, x̄) ≥ H(y, x̄) for all y ∈ Πi∈ITi(x̄).
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Proof. The equivalence of (1) and (2) follows immediately from the definition
of a social equilibrium in case of the infinite set of players. By using the
unconditional summablity of {fi | i ∈ I}, the implication (2) ⇒ (3) is obtained
by adding both sides of the inequalities fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for all i ∈ I.
To prove (3) implies (2), we first fix i, and take y = (x̄−i, yi) where yi ∈ Ti(x̄).
Then the inequality H(x̄, x̄) ≥ H(y, x̄) may be written as

fi(x̄−i, x̄i)− fi(x̄−i, yi) +
∑
j ̸=i

(
fj(x̄−j , x̄j)− fj(x̄−j , yj)

)
≥ 0.

Since yj = x̄j whenever j ̸= i, we have that for all i ∈ I, fi(x̄−i, x̄i) −
fi(x̄−i, yi) ≥ 0, which proves (2). □

Remark. Lemma 1 generalizes the previous results on the total sum of payoff
functions due to Lu [5], Nash [6], and Nikaido and Isoda [7] in the following
aspects:

(i) the set I of players need not be a finite set;
(ii) the inequalities on H(y, x) need not satisfy in the whole strategy set Xi,

but on the i-th player’s constraint set Ti(x̄). In fact, when the set I of players
is a finite set, and Ti(x̄) = Xi for each i ∈ I, Lemma 1 reduces to the lemma
due to Nikaido and Isoda [7].

In a generalized Nash game Γ = (Xi ;Ti, fi)i∈I , we denote the fixed point
set F ⊆ X of the correspondence T = Πi∈ITi : X → 2X by

F = {x ∈ X | xi ∈ Ti(x) for all i ∈ I},
and the range of T by R(T ).

We now prove a new existence theorem of social equilibrium for a generalized
Nash game with affine constraint correspondences by applying Himmelberg’s
fixed point theorem as follows:

Theorem 1. Let Γ = (Xi;Ti, fi)i∈I be a non-cooperative generalized Nash
game, where I be a (possibly uncountable) set of players, such that for each
i ∈ I, the strategy set Xi is a convex subset in a locally convex Hausdorff
topological vector space and Di is a nonempty compact subset of Xi. Let X =∏

i∈I Xi, and D =
∏

i∈I Di. For each i ∈ I, fi : X → R is a player’s payoff

function, and Ti : X → 2Di is upper semicontinuous such that each Ti(x) is a
nonempty closed convex subset of Di, and satisfies the affine condition that for
each λ ∈ [0, 1],

λTi(x) + (1− λ)Ti(y) ⊆ Ti(λx+ (1− λ)y) for all x, y ∈ X.

Assume that the total sum of payoff functions H : X × X → R satisfy the
following conditions:

(1) (x, y) 7→ H(y, x)−H(x, x) is lower semicontinuous in X ×X;
(2) for each x ∈ F , {y ∈ R(T ) | H(x, x) < H(y, x)} is convex in R(T );
(3) for each y ∈ R(T ), {x ∈ F | H(y, x) ≤ H(x, x)} is nonempty convex.
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Then the generalized Nash game Γ has a social equilibrium x̄ ∈ X, i.e., for
each i ∈ I, x̄i ∈ Ti(x̄), and fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for each xi ∈ Ti(x̄).

Proof. Suppose the contrary, i.e., we assume that Γ has no social equilibrium.
Then, by Lemma 1(3), we have
(∗) for each x ∈ X, either xi /∈ Ti(x) for some i ∈ I, or there exists y ∈ T (x)
such that H(x, x) < H(y, x).

Since each Ti is upper semicontinuous having nonempty compact convex
values, the correspondence T : X → 2D, defined by T (x) := Πi∈ITi(x) for
each x ∈ X, is also upper semicontinuous having nonempty compact convex
values. Therefore, by Himmelberg’s fixed point theorem, there exists a fixed
point x̂ ∈ X for T , i.e., x̂i ∈ Ti(x̂) for each i ∈ I. Then the fixed point set
F ⊆ X of the correspondence T is a nonempty closed subset of D by the
upper semicontinuity of T . Moreover, by the affine assumption on Ti, we have
R(T ) is a convex set. Indeed, if y1, y2 ∈ R(T ) and λ ∈ [0, 1] are arbitrarily
given, then there exist x1, x2 ∈ X such that y1 ∈ T (x1) and y2 ∈ T (x2). Let
x = λx1 + (1− λ)x2 ∈ X and y = λy1 + (1− λ)y2 ∈ X. Then for each i ∈ I,

yi = λ(y1)i + (1− λ)(y2)i ∈ λTi(x1) + (1− λ)Ti(x2)

⊆ Ti(λx1 + (1− λ)x2) = Ti(x);

so that R(T ) is convex. Similarly, by the affine assumption on Ti, we can also
have that F is a convex subset of X.

We shall assume that for each x ∈ X, x ∈ F in the statement (∗) of the
reduction ad absurdam. Then, since xi ∈ Ti(x) for all i ∈ I, there exists
y ∈ T (x) ⊂ R(T ) such that H(x, x) < H(y, x).

For each y ∈ R(T ), we let

N(y) := {x ∈ F | H(x, x) < H(y, x)}.
By the assumption (1), each N(y) is (possibly empty) open in F and we

have
∪

y∈R(T ) N(y) = F . Since F is compact, there exists a finite number of

points {y1, . . . , yn} ⊂ R(T ), and nonempty open sets N(y1), . . . , N(yn) such
that

∪n
i=1 N(yi) = F . Let {αi | i = 1, . . . , n} be the continuous partition of

unity subordinated to the open covering {N(yi) | i = 1, . . . , n} of the compact
set F , i.e.,

0 ≤ αi(x) ≤ 1,
n∑

i=1

αi(x) = 1 for all x ∈ F ;

and if x /∈ N(yi), for some 1 ≤ i ≤ n, then αi(x) = 0.

We now define a mapping ϕ : F → R(T ) by

ϕ(x) :=

n∑
i=1

αi(x) yi for each x ∈ F .

Then, ϕ is a continuous mapping since each αi is continuous. By the assumption
(2), for fixed x ∈ F , the set {y ∈ R(T ) | H(x, x) < H(y, x)} is convex in R(T )
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so that we have

(†)
ϕ(x) ∈ co {yi ∈ R(T ) | αi(x) ̸= 0}

⊆ {y ∈ R(T ) | H(x, x) < H(y, x)};

and hence we also see that ϕ maps F into R(T ).

Next, we define a multimap S : R(T ) → 2F by

S(y) := {x ∈ F | H(y, x) ≤ H(x, x)} for each y ∈ R(T ).

Then, for each y ∈ R(T ), by the assumption (3), S(y) is a nonempty convex set
in F . By the assumption (1) again, the set {(x, y) ∈ F×F | H(y, x)−H(x, x) ≤
0} is non-empty closed in F × F and hence it is compact. Therefore, for each
y ∈ R(T ), S(y) is the projection of a nonempty compact set in F × F so
that S(y) is compact. Next, it is easy to see that S has a closed graph in
R(T ) × F . In fact, for any nets (xα) → xo, (yα) → yo, yα ∈ S(xα), we have
H(yα, xα) ≤ H(xα, xα). Since the mapping (x, y) 7→ H(y, x)−H(x, x) is lower
semicontinuous, we have H(yo, xo) ≤ H(xo, xo). Hence yo ∈ S(xo) and S has
a closed graph in R(T )×F .

Finally, we define a multimap Φ : F → 2F by

Φ(x) = (S ◦ ϕ)(x) for each x ∈ F .

Since S has a closed graph and ϕ is continuous, Φ has a closed graph in a
compact set F × F , and each Φ(x) is nonempty compact convex. Therefore,
by the Fan-Glicksberg fixed point theorem, there exists a fixed point x̄ ∈ F for
Φ such that x̄ ∈ Φ(x̄) = S(ϕ(x̄)). Let x∗ = ϕ(x̄) ∈ R(T ); then

x̄ ∈ S(x∗) = {x ∈ F | H(x∗, x) ≤ H(x, x)}

so that H(x∗, x̄) ≤ H(x̄, x̄). On the other hand, since x∗ = ϕ(x̄), by the
inclusion (†), we have

x∗ = ϕ(x̄) ∈ {y ∈ R(T ) | H(x̄, x̄) < H(y, x̄)}

so that H(x∗, x̄) > H(x̄, x̄), which is a contradiction. This completes the
proof. □

Remark. Theorem 1 is a new equilibrium existence theorem which is compa-
rable with the previous existence theorems of Nash equilibrium due to Lu [5],
Nash [6], and Becker and Damianov [1] in the following aspects:

(i) the set I of players need not be a finite set;
(ii) the strategy set Xi need not be a compact set;
(iii) every payoff function fi need not be (quasi)concave nor continuous onX.

Indeed, when Ti(x) = Xi = Di for each i ∈ I, then we have R(T ) = F = X so
that if each fi : X → R is continuous on X and the function yi 7→ fi(x−i, yi) is
quasiconcave on Xi as in [5, 6, 7], then the assumptions (1) and (2) of Theorem
1 are satisfied.
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As remarked, when Xi = Di is compact and convex, if we let Ti(x) := Xi

for each x ∈ X and i ∈ I, then we have R(T ) = F = X and Ti automatically
satisfies the affine condition so that we can obtain the following:

Theorem 2. Let Γ = (Xi ; fi)i∈I be a non-cooperative strategic game of normal
form, where I be a (possibly uncountable) set of players, with the strategy set Xi

being nonempty compact convex subset in a locally convex Hausdorff topological
vector space E, X = Πi∈IXi, and fi : X → R being player’s payoff function.
Assume that the total sum of payoff function H : X × X → R satisfy the
following conditions:

(1) (x, y) 7→ H(y, x)−H(x, x) is lower semicontinuous on X;
(2) for each x ∈ X, {y ∈ X | H(x, x) < H(y, x)} is convex in X;
(3) for each y ∈ X, {x ∈ X | H(y, x) ≤ H(x, x)} is convex.

Then the infinite strategic game Γ has a Nash equilibrium.

Acknowledgments. This research was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education, Science and Technology (No. 2010-0009386), and
the author thanks the referee for his valuable suggestions for improvement of
the paper.

References

[1] J. G. Becker and D. S. Damianov, On the existence of symmetric mixed strategy equilibria,

Econom. Letters 90 (2006), no. 1, 84–87.
[2] G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A. 38

(1952), 386–393.
[3] W. K. Kim and S. Kum, Existence of Nash equilibrium in a compact acyclic strategic

game, J. Chungcheong Math. Soc. 23 (2010), 29–35.
[4] W. K. Kim and K. H. Lee, Nash equilibrium and minimax theorem with C-concavity, J.

Math. Anal. Appl. 328 (2007), no. 2, 1206–1216.

[5] H. Lu, On the existence of pure strategy Nash equilibrium, Econom. Letters 94 (2007),
no. 3, 459–462.

[6] J. Nash, Non-cooperative games, Ann. Math. 54 (1951), 286 – 295.
[7] H. Nikaido and K. Isoda, Note on non-cooperative convex games, Pacific J. Math. 5

(1955), 807 – 815.

Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Korea
E-mail address: wkkim@chungbuk.ac.kr


