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ON AN INVERSE PROBLEMS FOR LAPLACE EQUATIONS

WITH POTENTIAL TERMS ON ELECTRICAL NETWORKS

Ji Chan Chung, Du Hyeong Kim, and Tae Hoon Kwon

Abstract. In this paper, we deal with an inverse problem for electrical
resistor networks to detect the location of nodes where an extraordinary
currents flow into or out of the nodes proportional to the potentials on

them. To achieve the goal, we solve a special type of mixed boundary
value problem for Laplace equations with potential terms on rectangular
networks which plays a role as a forward problem. Then we solve an

inverse problem to develop an algorithm to locate the node where the
extraordinary current flows on it at most four times of measurements of
potential and current on its boundary.

1. Introduction

A network is a structure consisted by the set of nodes and the set of links
which connects selected nodes and has been widely used as a tool for modeling
physical, biological and social phenomena. As technologies develop, electrical
networks tend to be more miniaturized or structurally complicated so that
when we have some problem on a part of the network, it is almost impossible to
investigate the whole network. For this reason, developing a method to recover
the whole network using partial data becomes more and more important for
practical applications.

Suppose an electrical network which has nodes where the extraordinary cur-
rents flow into or out of the nodes proportional to the potentials on them. This
phenomenon is mathematically modeled as an equation which is said to be the
discrete Laplace equation with potential term or discrete Schrödinger equation
and various type of boundary value problems for the equation have been stud-
ied so far (see, for example, [1]). The main consideration of this paper is to
develop an efficient algorithm to detect the location of the erroneous nodes
using the electrical potentials and currents measured on its boundary. There
have been numerous works (see, for example, [3, 4, 5]) on locating the edges
whose conductivities are perturbed, which is called the faulty resistor problem,
but little has been so far studied about locating the nodes on which external
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currents flows. From the economical viewpoint, it is no less important to de-
velop an algorithm with minimal measurements than to develop an accurate
algorithm. With this in mind, in this paper, we provide an algorithm which
needs at most four times of measurements.

This research has been studied under the following two restrictions. First,
every electrical networks in this study are assumed to be the resistor networks
without inductors or capacitors, although studying the RLC circuits are very
important for practical purpose. We leave it for the future works. Second, at
the stage of studying inverse problems and developing algorithm, we only deal
with a special type of networks - the rectangular networks. It is also leaved to
the future work to develop algorithms which can be applied to more general
type of networks. But in authors’ opinion, rectangular network is not an ex-
cessive restriction when one applies our algorithm to solve inverse problems on
continuum by using the method of discretizing domain such as finite difference
method (see, for example, [2]).

2. Preliminaries

In this section, we recall notations and basic results on the theory of electrical
networks. For more details, it is recommended to refer to [1, 3, 4, 5]. Graph
consists a finite set V of nodes and a set E of links which connects two selected
nodes. A graph G(V,E) is said to be simple if it has neither multiple links
nor loops. If x and y ∈ V are connected by a link, it is denoted as x ∼ y.
Representing the link as {x, y}, it is natural to regard the set E of links as the
subset {{x, y} | x, y ∈ V x ∼ y} of the set V × V. A weighted graph G(V,E;ω)
is a graph G(V,E) associated with a weight function ω : V × V → [0,∞)
satisfying {

ω(x, y) = 0 ⇔ x ∼ y,
ω(x, y) = ω(y, x), x, y ∈ V.

From now on, the weighted graph is said to be the network. Since the set of
edge E is uniquely determined by the weight function, the network G(V,E;ω)
is simplified as G(V ;ω). A network G(V ;ω) is said to be connected if for each
pair of nodes x and y, there exists a sequence of vertices {x1, . . . , xn} such
that x = x1 ∼ x2 ∼ · · · ∼ xn = y. Throughout this paper, every networks are
regarded as connected networks, unless otherwise noted.

The networks we consider in this paper are electrical resistor networks (ERNs).
For two nodes x ∼ y of an ERN G(V ;ω), the weight ω(x, y) plays a role of
the reciprocal of its resistance R(x, y) on the link connecting x and y, namely,
ω(x, y) = 1/R(x, y), x ∼ y. Note that for each x and y ∈ V with x ∼ y, the
weight ω(x, y) represents the conductivity between the nodes. If a network sat-
isfy Kirchhoff’s law on each of its node, then it can be mathematically modeled
by

(1) ∆ωu(x) = 0, x ∈ V
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where ∆ωu(x) :=
∑

y∈V [u(y)− u(x)]ω(x, y). Here, the function u : V → R

represents the potential on the nodes. If a network G(V ;ω) has N nodes so
that V is represented by V = {x1, x2, . . . , xN}, then it is easy to see that (1)
can be rewritten as the following system of linear equation:

−dωx1 ω(x1, x2) · · · ω(x1, xN )
ω(x2, x1) −dωx2 · · · ω(x2, xN )

...
...

. . .
...

ω(xN , x1) ω(xN , x2) · · · −dωxN




u(x1)
u(x2)

...
u(xN )

 =


0
0
...
0


where dωx :=

∑
y∈V ω(x, y). Therefore, the square matrix in the above equation

is said to be the Kirchhoff matrix. Throughout this paper, the Kirchhoff matrix
is denoted as ∆ω. We sometimes partition the set of nodes V into two disjoint
subsets S and ∂S so that V = S ∪ ∂S. The subsets S and ∂S of V are said to
be the interior and the boundary of V, respectively. In what follows, we use the
notation S, instead of V, to denote the set of nodes if it is partitioned into the
interior S and the boundary ∂S ̸= ∅ and z1 ≁ z2 for each z1 and z2 ∈ ∂S. The
normal derivative of a function u : S → R at each boundary node is defined as

∂u

∂n
(z) =

∑
y∈S

[u(z)− u(y)]ω(y, z).

Note that ∂u
∂n (z) = −∆ωu(z), z ∈ ∂S. For an ERN G(S;ω), if the potentials

are given arbitrary on its boundary nodes, then the potentials on interior nodes
are determined by Kirchhoff’s law. The unique determinacy of the potentials
on interior is guaranteed by the following well known result (see, for example,
[3]).

Theorem 2.1. For an ERN G(S;ω), there exists a unique solution u : S → R
of the following Dirichlet boundary value problem (DBVP){

−∆ωu(x) = 0, x ∈ S
u(z) = σ(z), x ∈ ∂S.

3. Boundary value problems for Laplace equation with potential
terms on networks

From now on, we consider an electrical network where an extraordinary cur-
rent flows on each node in S proportional to the potential on it. If a potential
σ : ∂S → R is imposed on its boundary, then this phenomenon can be mathe-
matically modeled by the following DBVP for Laplace equation with potential
terms on networks.

(2)

{
−∆ωu(x) + q(x)u(x) = 0, x ∈ S
u(z) = σ(z), z ∈ ∂S,

where the potential term q(x)u(x) means the extraordinary current flows on the
node x. The main concern in this subsection is to prove the unique solvability
of the above DBVP (2) (Theorem 3.1). We also consider Neumann and mixed
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boundary value problems which deal with the case that currents and mixtures
of currents and potentials are imposed on the boundary, respectively (Theorems
3.2∼3.3). Let {x1, . . . , xK} and {xK+1, . . . , xN} denote the set S and the set
∂S, respectively. Note that (2) can be represented by the following system of
linear equation

(−∆ω +Dq)U = Ψ,

where Dq denotes the diagonal matrix

q(x1) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · q(xK) 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


,

U :=



u(x1)
...

u(xK)
σ(xK+1)

...
σ(xN )


and Ψ :=



0
...
0

ψ(xK+1)
...

ψ(xN )


.

We divide the matrix −∆ω +Dq by four parts as

−∆ω +Dq =

(
(−∆ω +Dq)(S;S) (−∆ω +Dq)(∂S;S)
(−∆ω +Dq)(S; ∂S) (−∆ω +Dq)(∂S; ∂S)

)
,

where

(−∆ω +Dq)(S;S) =

 dωx1 + q(x1) · · · −ω(x1, xK)
...

. . .
...

−ω(xK , x1) · · · dωxK + q(xK)

 .

Since it is well known that the submatrix

−∆ω(S;S) :=


dωx1 −ω(x1, x2) · · · −ω(x1, xK)

−ω(x2, x1) dωx2 · · · −ω(x2, xK)
...

...
. . .

...
−ω(xK , x1) −ω(xK , x2) · · · dωxK


of −∆ω is positive definite, it is easy to see that if q(x) ≥ 0, x ∈ S, then the
submatrix (−∆ω+Dq)(S;S) is positive definite. On the other hand, the known
fact that −∆ω is nonnegative definite guarantees that for a function q ̸= 0 with
q(x) ≥ 0, x ∈ S, the matrix −∆ω +Dq is positive definite.
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We state below the various boundary value problems for the Laplace equa-
tion with potential terms. Since they are easily proved by using the above
facts, we omit their proofs.

Theorem 3.1. For an ERN G(S;ω) and a function q : S → R with q(x) ≥
0, x ∈ S, there exists a unique solution u : S → R of the following Dirichlet
boundary value problem (DBVP){

−∆ωu(x) + q(x)u(x) = 0, x ∈ S
u(z) = σ(z), x ∈ ∂S.

Moreover, the solution u is represented as

[uS ] = [(−∆ω +Dq)(S;S)]
−1

[(∆ω −Dq)(S; ∂S)] [σ],

where [uS ] :=
(
u(x1), . . . , u(xK)

)T
and [σ] :=

(
σ(xK+1), . . . , σ(xN ))

)T
.

Theorem 3.2. For an ERN G(S;ω) and a nonzero function q : S → R with
q(x) ≥ 0, x ∈ S, there exists a unique solution u : S → R of the following
Neumann boundary value problem (NBVP){

−∆ωu(x) + q(x)u(x) = 0, x ∈ S
∂u
∂n (z) = ψ(z), x ∈ ∂S.

Moreover, the solution u is represented as

[u] = [(−∆ω +Dq)(S;S)]
−1

[0|ψ],

where [u] :=
(
u(x1), . . . , u(xN )

)T
and [0|ψ] :=

(
0, . . . , 0, ψ(xK+1), . . . , ψ(xN ))

)T
.

Theorem 3.3. For an ERN G(S;ω) with boundary ∂S = ∂S1 ∪ ∂S2 (∂S1 ∩
∂S2 = ∅) and a function q : S → R with q(x) ≥ 0, x ∈ S, there exists a unique
solution u : S → R of the following Dirichlet boundary value problem (DBVP)

−∆ωu(x) + q(x)u(x) = 0, x ∈ S
∂u
∂n (z) = ψ(z), z ∈ ∂S1

u(z) = σ(z), x ∈ ∂S2.

Moreover, by indexing the boundary nodes as ∂S1 = {xK+1, . . . , xK+m} and
∂S2 = {xK+m+1, . . . , xN}, the solution u is represented as

[uS∪∂S1 ] = [(−∆ω +Dq)(S ∪ ∂S1;S ∪ ∂S1)]
−1

× {[0|ψ] + [(∆ω −Dq)(S ∪ ∂S1; ∂S2)][σ]} ,

where [uS∪∂S1 ] :=
(
u(x1), . . . , u(xK+m

)T
, [0|ψ] := (0, . . . , 0, xK+1, . . . , xK+m)

and [σ] :=
(
σ(xK+m+1), . . . , σ(xN ))

)T
.
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Figure 1.

4. An inverse problem on rectangular networks

An m × n rectangular network G(S;ω) is a network which is constructed
as follows. The set of nodes S is the set of the lattice points (i, j) for which
i = 0, 1, 2, . . . , n + 1 and j = 0, 1, 2, . . . ,m + 1 with the four corner points
(0, 0), (0,M + 1), (N + 1, 0) and (N + 1, N + 1) are excluded. The interior S
of S is the set of nodes (i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ M . The set of edges E
is the set of horizontal and vertical line segment which connects each pair of
adjacent nodes x and y ∈ S or which connects each boundary node z ∈ ∂S to
its adjacent interior node x ∈ S. See Figure 1.

Let G(S;ω) be the rectangular network which satisfy

−∆ωu(x) + q(x)u(x) = 0, x ∈ S.

The main consideration of this subsection is to locate the support of the func-
tion q(x) using a mixture of Dirichlet and Neumann boundary condition on its
boundary nodes. Especially, we are interested in the case that q(x) is supported
at one node x0 ∈ S, namely, q(x) = kδx0 , x ∈ S for some k ∈ R \ {0}. Here δa
denotes the Kroneker delta centered at a.

4.1. A forward problem

In what follows, our interest will be restricted toN×N rectangular networks.
We use the notation ∂SN , ∂SE , ∂SW and ∂SS to partition the boundary
into four parts as ∂SN = {(i,N + 1) | i = 1, 2, . . . , N}, ∂SW = {(0, i) | i =
1, 2, . . . , N}, ∂SS = {(i, 0) | i = 1, 2, . . . , N} and ∂SE = {(N + 1, i) | i =
1, 2, . . . , N}.
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Figure 2.

Lemma 4.1. For the network given as Figure 2, we have the following.
(i) If ∆ωu(y) ≥ 0 (resp. ≤ 0) and u(y) ≥ u(xi) (resp. ≤ u(xi)), i = 1, 2, 3,

then u(x4) ≥ u(y) (resp. ≤ u(y)). Moreover, if we append the assumption that
u(y) > u(xi) (resp. < u(xi)) for some i = 1, 2, 3, then u(x4) > u(y) (resp.
< u(y)).

(ii) If ∆ωu(y) > 0 (resp. < 0) (resp. = 0) and u(y) = u(xi) = 0, i = 1, 2, 3,
then u(x4) > 0 (resp. < 0) (resp. = 0).

Proof. They can be easily proved from the following fact:

u(x4) =
∆ωu(y) + u(y)dωy −

∑3
i=1 u(xi)ω(xi, y)

ω(x4, y)
.

□

To solve the main result - the inverse problem to locate the support of q(x),
we first need to solve a certain type of MBVP, which play a role of the forward
problem.

Theorem 4.2. Let ψ : ∂SE → R be given. The solution u : S → R of the
following MBVP

(3)


−∆ωu(x) + q(x)u(x) = 0, x ∈ S
u(z) = ∂u

∂n (z) = 0, z ∈ ∂SN ∪ ∂SW
∂u
∂n (z) = ψ(z), z ∈ ∂SE

exists and is uniquely determined.

Proof. From the above boundary condition, we have u(x) = 0 for each interior
node x adjoint to some nodes in ∂SN ∪ ∂SW , precisely, x = (1, i) or x = i,N ,
i = 1, 2, . . . , N. Then it follows from the result in (ii) of Lemma 4.1, it is easy
to see that u(x) = 0 in ∂SN ∪ ∂SW ∪ T where

T = {x = (i, j) | 1 ≤ i ≤ N, i ≤ j ≤ N}.

See Figure 3 for the case N = 9. Next we calculate the potential u(x) uniquely
at the nodes x ∈ S \ [∂SN ∪∂SW ∪T ] following the numerical order as in Figure
4 (see also Figure 5 for the case N = 9). This completes the proof. □
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Figure 3.

Remark 4.3. According to the proof of the above theorem, we have

u ≡ 0, in T

and moreover, if the current ψ : ∂SE → R is defined by

(4) ψ(z) =

{
c, z = (N + 1, N)
0, z ∈ ∂SE \ {(N + 1, N)}

for some c ∈ R, then it follows from Lemma 4.1 that

u(z) ̸= 0, x ∈ S \ T

by calculating the potentials in the numerical order given in Figure 4.

4.2. Exact localization of the support of the potential term

Consider an N × N network which satisfy Kirchhoff’s law in all interion
nodes except at x0 ∈ S, where an extraordinary current flows proportional
to the potential on it. If one impose a certain type of boundary condition -
applying the potential u(z) = 0 and the current ∂u

∂n (z) = 0 for z ∈ ∂SN ∪ ∂SW

and the current ∂u
∂n (z) = ψ(z) for z ∈ ∂SE , ψ is defined the same as in (4),

then this phenomenon is expressed as the MBVP (3), where the potential term
q : S → R is defined by q(x) = kδx0(x), x ∈ S for some k ∈ R \ {0}. The main
interest in this subsection is to provide an algorithm to locate the x0 ∈ S using
the boundary observation σ(z) = u(z) on ∂SS ∪ ∂SE . Note that Theorem 4.2
guarantees the unique existence of the potential σ : ∂SS ∪ ∂SE → R.
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Figure 4.

Figure 5.

Let the node (1, 0) ∈ ∂SS be named as z1 and other nodes in ∂SS ∪ ∂SE

as z2, z3, . . . , z2N with clockwise increasing index numbers, precisely, z2 =
(2, 0), . . . , zN = (N, 0), zN+1 = (N + 1, 1), . . . , z2N = (N + 1, N). See Fig-
ure 6.
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Figure 6.

We state and prove the main result of this paper.

Theorem 4.4. For given ψ : ∂SE → R defined the same as in (4) and x0 ∈ S,
let u : S → R be the solution of the equation (3) and u0 : S → R be the
background potential, i.e., the solution of the equation

(5)


−∆ωu0(x) = 0, x ∈ S

u0(z) =
∂u0

∂n (z) = 0, z ∈ ∂SN ∪ ∂SW
∂u0

∂n (z) = ψ(z), z ∈ ∂SE .

(i) If x0 ∈ T = {(i, j) ∈ S | i ≤ j}, then u ≡ u0 on ∂SS ∪ ∂SE .
(ii) If x0 = (i0, j0) ∈ S \ T , then we have

u(z) ̸= u0(z), z ∈ Ax0 ⊂ ∂SS ∪ ∂SE

and

u(z) = u(z0), z ∈ ∂SS ∪ ∂SE \Ax0
,

where

Ax0 = {zi0−j0+n ∈ ∂SS ∪ ∂SE | n = 1, 2, . . . , 2j0 − 1}

(see Figure 7 and Figure 8).

Figure 7.
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Figure 8.

Proof. Note that U : S → R defined by U(z) = u(z) − u0(z), z ∈ S is the
solution of the following mixed boundary value probelm

−∆ωU(x) + q(x)u(x) = 0, x ∈ S
U(z) = ∂U

∂n (z) = 0, ∂SN ∪ ∂SW
∂U
∂n (z) = 0, z ∈ ∂SE .

If x0 ∈ T, then it follows from Remark 4.3 that u(x0) = 0 and hence we have

q(x)u(x) = kδx0(x)u(x) = 0, x ∈ S.

Calculating U(x), x ∈ S \ T in numerical order given in Figure 4, it follows
from Lemma 4.1 that U(x) = 0, x ∈ S \ T, which proves (i). On the other
hand, if x0 ∈ S \ T, then again by Remark 4.3, we have q(x0)u(x0) ̸= 0 and
calculating U(x), x ∈ S \ T the same way as we have used to prove (i), we can
easily show that U(x) ̸= 0, x ∈ Ax0 , which proves (ii). □

Algorithm.
For given ψ : ∂SE → R with ψ(N +1, N) ̸= 0 and x0 ∈ S, let u : S → R be

the solution of the MBVP (3) where

q(x) = kδx0(x) for some k ∈ R \ {0}
and

U(z) := u(z)− u0(z), z ∈ ∂SS ∪ ∂SE ,

where u0 is the background potential satisfying (5). Based on Theorem 4.4,
we provide an algorithm to detect the position x0 of the source term. Like the
preceding, the boundary nodes in ∂SS ∪ ∂SE is named by z1, . . . , z2N , starting
from the node z1 = (1, 0) with clockwise increasing index numbers, ending with
z2N = (N + 1, N).

Step I. Observe U(z), z ∈ ∂SS ∪ ∂SE . It follows from Theorem 4.4 that
either (i) U(z) ̸= 0 for z = zi, zi+1, . . . , zi+2n for some i and n or (ii) U(z) ≡ 0
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on ∂SS∪∂SE . In the case (i), we conclude that x0 = (i+n, n+1) and complete
the algorithm. In the case (ii), we conclude that x0 ∈ T and move to Step II.

Step II. Rotate the network upside down and repeat Step I again (See Figure
9). In the case (i), we again conclude that x0 = (i+n, n+1) and complete the
algorithm. In the case (ii), we now conclude that x0 lies in the diagonal nodes
(with negative slope), i.e., x0 ∈ {(i,−i+N +1) | i = 1, 2, . . . , N} and move to
Step III.

Step III. Rotate the network clockwise through 90 degrees and repeat Step I
again (See Figure 10). In the case (i), we again conclude that x0 = (i+n, n+1)
and complete the algorithm. In the case (ii), we now conclude that x0 ∈
{(i, j) | i = 1, 2, . . . ,

[
N
2

]
− 1} and move to Step IV.

Step IV. Repeat Step III again. In the case (i), we again conclude that
x0 = (i + n, n + 1) and complete the algorithm. In the case (ii), we conclude
that x0 = (

[
N
2

]
+ 1,

[
N
2

]
+ 1) and complete the algorithm.

=⇒

Figure 9.

=⇒

Figure 10.

Remark 4.5. The case (ii) in the Step IV only occurs when N is an odd number.
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