β-ALGEBRAS AND RELATED TOPICS

Young Hee Kim and Keum Sook So

Abstract

In this note we investigate some properties of β-algebras and further relations with B-algebras. Especially, we show that if $(X,-,+, 0)$ is a B^{*}-algebra, then $(X,+)$ is a semigroup with identity 0 . We discuss some constructions of linear β-algebras in a field K.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras ($[3,4]$). We refer useful textbooks for $B C K / B C I$ algebra to $[2,6,9]$. J. Neggers and H. S. Kim ([7]) introduced another class related to some of the previous ones, viz., B-algebras and studied some of its properties. They also introduced the notion of β-algebra ([8]) where two operations are coupled in such a way as to reflect the natural coupling which exists between the usual group operation and its associated B-algebra which is naturally defined by it. P. J. Allen et al. ([1]) gave another proof of the close relationship of B-algebras with groups using the observation that the zero adjoint mapping is surjective. H. S. Kim and H. G. Park ([5]) showed that if X is a 0 -commutative B-algebra, then $(x * a) *(y * b)=(b * a) *(y * x)$. Using this property they showed that the class of p-semisimple $B C I$-algebras is equivalent to the class of 0 -commutative B-algebras.

In this note we investigate some properties of β-algebras and further relations with B-algebras. Especially, we show that if $(X,-,+, 0)$ is a B^{*}-algebra, then $(X,+)$ is a semigroup with identity 0 . Finally we discuss some constructions of linear β-algebras in a field K.

2. Preliminaries

A β-algebra ([8]) is a non-empty set X with a constant 0 and two binary operations "+" and "-" satisfying the following axioms: for any $x, y, z \in X$,
(I) $x-0=x$,
(II) $(0-x)+x=0$,

Received October 12, 2010.
2010 Mathematics Subject Classification. 06F35.
Key words and phrases. β-algebra, B-algebra, B^{*}-algebra, linear.
(III) $(x-y)-x=x-(z+y)$.

Example 2.1 ([8]). Let $X:=\{0,1,2,3\}$ be a set with the following tables:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Then $(X,+,-, 0)$ is a β-algebra.
Proposition $2.2([8])$. Let (G, \cdot, e) be a group. If we define $x+y:=x \cdot y, x-y:=$ $x \cdot y^{-1}, 0:=e$ for any $x, y \in G$, then $(G,+,-, 0)$ is a β-algebra, called a groupderived β-algebra and denoted by $A(G)$.

Proposition 2.3 ([8]). Let S be a set. If we define $x+y:=x, x-y:=x$ and $0 \in S$, then $(S,+,-, 0)$ is a β-algebra, called a left β-algebra and denoted by A_{S}.

It is known that the Cartesian product $X \times Y$ of a group-derived β-algebra X and a left β-algebra Y is a β-algebra which is neither group-derived nor a left β-algebra, and denoted by $A(G) \times A_{S}$.

We note that if a β-algebra is either $A(G)$ or A_{S}, then it is also the case that
(IV) $x+y=x-(0-y)$.

Hence the condition (IV) holds for β-algebras of the type $A(G) \times A_{S}$ as well.
Group-derived and left β-algebras part ways via the following conditions:
$\left(\mathrm{V}_{a}\right) x-x=0$ (group derived),
$\left(\mathrm{V}_{b}\right) x-x=x$ (left).
We list two classes of β-algebras of special interest. A β-algebra X is said to be a B^{*}-algebra if (IV) and $\left(\mathrm{V}_{b}\right)$ hold. J. Neggers and H. S. Kim introduced the notion of B-algebra, and obtained various properties. An algebra $(X,-, 0)$ is said to be a B-algebra $([7])$ if it satisfies $(I),\left(\mathrm{V}_{a}\right)$ and
(VI) $(x-y)-z=x-(z-(0-y))$
for any $x, y, z \in X$.

3. β-algebras and related topics

Given a β-algebra X, we denote $x^{*}:=0-x$ for any $x \in X$.
Proposition 3.1. Let $(X,+,-, 0)$ be a β-algebra with condition (IV). Then the following holds: for any $x, y, z \in X$,
(1) $x^{*}+y=x^{*}-y^{*}$,
(2) $x^{*}+x=0$,
(3) $x^{*}-x^{*}=0$,
(4) $x^{*}-y^{*}=\left(y^{*}-x^{*}\right)^{*}$,
(5) $x+y=x-y^{*}$,
(6) $x=(x-y)+y=(x-y)-y^{*}$,
(7) $y-x=y^{\prime}-x$ implies $y=y^{\prime}$.

Proof. (1) By (IV), $x^{*}+y=(0-x)+y=(0-x)-(0-y)=x^{*}-y^{*}$. (2) From (II) $0=(0-x)+x=x^{*}+x$. (3) If we let $y:=x$ in (1), then $x^{*}-x^{*}=x^{*}+x=0$ by (2). (4) It follows from (III) and (1) that $x^{*}-y^{*}=(0-x)-(0-y)=$ $0-((0-y)+x)=0-\left(y^{*}+x\right)=0-\left(y^{*}-x^{*}\right)=\left(y^{*}-x^{*}\right)^{*}$. (5) It follows from (IV) immediately. (6) $x=x-0=x-((0-y)+y)=(x-y)-y^{*}=(x-y)+y$. (7) Suppose that $y-x=y^{*}-x$. Then $y=(y-x)+x=\left(y^{*}-x\right)+x=y^{*}$, proving the proposition.

Let $(X,+,-, 0)$ be a β-algebra with condition (IV) and let $x \in X$. We denote sum of x as follows:

$$
\begin{aligned}
& 0 x=0, \quad 1 x=x, \\
& 2 x=x-(0-x)=x+x, \quad 3 x=2 x+x=(x+x)+x, \\
& n x=(n-1) x+x \quad \text { where } n \text { is a natural number } \geq 2 .
\end{aligned}
$$

Proposition 3.2. Let $(X,+,-, 0)$ be a β-algebra with condition (IV). Then

$$
(x-n y)+y=x-(n-1) y
$$

for any $x, y \in X$ where n is a natural number.
Proof. For any $x, y \in X,(x-2 y)+y=(x-(y+y))+y=((x-y)-y)+y=x-y$ by Proposition 3.1(6).

$$
\begin{array}{rlrl}
(x-3 y)+y & =(x-(2 y+y))+y & \\
& =((x-y)-2 y)+y & \\
& =[(x-y)-(y+y)]+y & & \\
& =[((x-y)-y)-y]+y & & {[\text { by (III) }]} \\
& =(x-y)-y & & \text { [by Proposition 3.1(6)] } \\
& =x-2 y . & &
\end{array}
$$

Using mathematical induction on n, we obtain $(x-n y)+y=x-(n-1) y$ for any natural number n.

Proposition 3.3. Let $(X,-, 0)$ be a B-algebra with (IV). Then $(X,-,+, 0)$ is a β-algebra.

Proof. (II) By applying (IV) and $\left(\mathrm{V}_{a}\right)$, we obtain $(0-x)+x=(0-x)-(0-x)=$ 0 . (III) By applying (VI) and (IV), we obtain $(x-y)-z=x-(z-(0-y))=$ $x-(z+y)$. Hence $(X,-,+, 0)$ is a β-algebra.

Proposition 3.4. Let $(X,-,+, 0)$ be a β-algebra with condition (IV). Then it satisfies the condition (VI).

Proof. Given $x, y, z \in X$, we have

$$
\begin{aligned}
x-(z-(0-y)) & =(x-(z+y) & & {[\text { by (IV) }] } \\
& =(x-y)-z, & & {[\text { by (III) }] }
\end{aligned}
$$

proving the proposition.
Lemma 3.5. Let $(X,-,+, 0)$ be a B^{*}-algebra. Then for any $x \in X$, we have

$$
x=0-(0-x) .
$$

Proof. For any $x \in X$, we have

$$
\begin{aligned}
x & =x-0 & & {[\mathrm{by}(\mathrm{I})] } \\
& =x-[(0-x)+x] & & {[\mathrm{by}(\mathrm{II})] } \\
& =(x-x)-(0-x) & & {[\mathrm{by}(\mathrm{III})] } \\
& =0-(0-x), & & {\left[\mathrm{by}\left(\mathrm{~V}_{\mathrm{a}}\right)\right] }
\end{aligned}
$$

proving the lemma.
Theorem 3.6. If $(X,-,+, 0)$ is a B^{*}-algebra, then $(X,+)$ is a semigroup with identity 0 .
Proof. We claim that $(0-z)+(0-y)=0-(y+z)$. By applying (IV), Lemma 3.5 and (III), we obtain $(0-z)+(0-y)=(0-z)-(0-(0-y))=(0-z)-y=$ $0-(y+z)$. For any $x, y, z \in X$, we have

$$
\begin{aligned}
(x+y)+z & =(x+y)-(0-z) \\
& =(x-(0-y))-(0-z) \\
& =x-[(0-z)+(0-y)] \\
& =x-[0-(y+z)] \\
& =x+(y+z) .
\end{aligned}
$$

Hence $(X,+)$ is a semigroup. Since $x+0=x-(0-0)=x-0=x$ and $0+x=0-(0-x)=x, 0$ acts as an identity.

Corollary 3.7. Let $(X,-,+, 0)$ be a B^{*}-algebra. If $0-x=0-y$, then $x+y=0$.
Proof. Suppose that $0-x=0-y$. Then $0=(0-x)+x=(0-y)+x=$ $(0-y)-(0-x)=0-(x+y)$ by applying the claim in the proof of Theorem 3.6. Since $0-0=0$, by applying Proposition 3.1(7), we obtain $x+y=0$.

4. Linear $\boldsymbol{\beta}$-algebras

Let $(K,+, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Define two binary operations " \ominus, \oplus " on K as follows:

$$
\begin{aligned}
& x \ominus y:=\alpha+\beta x+\gamma y, \\
& x \oplus y:=A+B x+C y,
\end{aligned}
$$

where $\alpha, \beta, \gamma, A, B, C \in K$ (fixed). Assume that (K, \ominus, \oplus, e) is a β-algebra. It is necessary to find proper solutions for two equations. Since $x=x \ominus e=$ $\alpha+\beta x+\gamma e$, we obtain $(\beta-1) x+(\alpha+\gamma e)=0$, and hence $\beta=1$ and $\alpha=-\gamma e$. It follows that

$$
\begin{equation*}
x \ominus y=x+\gamma(y-e) \tag{1}
\end{equation*}
$$

Since $(e \ominus x) \oplus x=e$, we obtain

$$
\begin{equation*}
[A-B e(1-\gamma)-e]+(B \gamma+C) x=0, \forall x \in K \tag{2}
\end{equation*}
$$

It follows from (2) that $C=-B \gamma, A=[1+B(1-\gamma)] e$. Hence we have

$$
\begin{equation*}
x \oplus y=[1+B(1-\gamma)] e+B(x-\gamma y) \tag{3}
\end{equation*}
$$

Using (1) we obtain

$$
\begin{equation*}
(x \ominus y) \ominus z=x+\gamma(y+z-2 e) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x \ominus(z \oplus y)=x+\gamma(z \oplus y-e) \tag{5}
\end{equation*}
$$

To satisfy condition (III), if $\gamma \neq 0$, then

$$
z \oplus y-e=y+z-2 e
$$

i.e., $z \oplus y=z+y-e$. Hence $x \oplus y=x+y-e$ and $B=C=1$. Since $C=-B \gamma, \gamma=-1$, and hence $x \ominus y=x-y+e$. In the case of $\gamma=0$, we obtain from (1) and (3) that $x \ominus y=x$ and $x \oplus y=(1+B) e+B x$, which leads to a contradiction, since $(e \ominus x) \oplus x=1+2 B e \neq e$. We summarize:

Theorem 4.1. Let $(K,+, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Then (K, \ominus, \oplus, e) is a β-algebra, where $x \ominus y=x-y+e$ and $x \oplus y=x+y-e$ for any $x, y \in K$.

We call such a β-algebra described in Theorem 4.1 a linear β-algebra.
If we let $\varphi: X \rightarrow X$ be a map defined by $\varphi(x)=e+b x$ for some $b \in K$. Then we have

$$
\begin{aligned}
\varphi(x+y) & =e+b(x+y) \\
& =(e+b x)+(e+b y)-e \\
& =\varphi(x) \oplus \varphi(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(x-y) & =e+b(x-y) \\
& =(e+b x)-(e+b y)+e \\
& =\varphi(x) \ominus \varphi(y)
\end{aligned}
$$

so that $\varphi(0)=e$ implies $\varphi:(K,-,+, 0) \rightarrow(K, \ominus, \oplus, e)$ is a homomorphism of β-algebras, where " - " is usual subtraction in the field K. If $b \neq 0$, then ψ : $(K, \ominus, \oplus, e) \rightarrow(K,-,+, 0)$ defined by $\psi(x):=(x-e) / b$ is a homomorphism of
β-algebras and the inverse mapping of the mapping φ, so that (K, \ominus, \oplus, e) and $(K,-,+, 0)$ are isomorphic as β-algebras, i.e., there is only one isomorphism type in this case. We summarize:
Proposition 4.2. The β-algebra (K, \ominus, \oplus, e) discussed in Theorem 4.1 is unique up to isomorphism.

References

[1] P. J. Allen, J. Neggers, and H. S. Kim, B-algebras and groups, Sci. Math. Jpn. 59 (2004), no. 1, 23-29.
[2] A. Iorgulescu, Algebras of Logic as BCK-Algebras, Editura ASE, Bucharest, 2008.
[3] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
[4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), no. 1, 1-26.
[5] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62 (2005), no. 1, 7-12.
[6] J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoon Sa, Seoul, 1994.
7] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21-29
[8] , On β-algebras, Math. Slovaca 52 (2002), no. 5, 517-530.
[9] H. Yisheng, BCI-Algebras, Science Press, Beijing, 2006.
Young Hee Kim
Department of Mathematics
Chungbuk National University
Cheongju 361-791, Korea
E-mail address: yhkim@chungbuk.ac.kr
Keum Sook So
Department of Mathematics
Hallym University
Chuncheon 200-702, Korea
E-mail address: ksso@hallym.ac.kr

