Commun. Korean Math. Soc. **27** (2012), No. 2, pp. 217–222 http://dx.doi.org/10.4134/CKMS.2012.27.2.217

β -ALGEBRAS AND RELATED TOPICS

Young Hee Kim and Keum Sook So

ABSTRACT. In this note we investigate some properties of β -algebras and further relations with *B*-algebras. Especially, we show that if (X, -, +, 0) is a *B*^{*}-algebra, then (X, +) is a semigroup with identity 0. We discuss some constructions of linear β -algebras in a field *K*.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras ([3, 4]). We refer useful textbooks for BCK/BCIalgebra to [2, 6, 9]. J. Neggers and H. S. Kim ([7]) introduced another class related to some of the previous ones, viz., *B*-algebras and studied some of its properties. They also introduced the notion of β -algebra ([8]) where two operations are coupled in such a way as to reflect the natural coupling which exists between the usual group operation and its associated *B*-algebra which is naturally defined by it. P. J. Allen et al. ([1]) gave another proof of the close relationship of *B*-algebras with groups using the observation that the zero adjoint mapping is surjective. H. S. Kim and H. G. Park ([5]) showed that if X is a 0-commutative *B*-algebra, then (x * a) * (y * b) = (b * a) * (y * x). Using this property they showed that the class of *p*-semisimple *BCI*-algebras is equivalent to the class of 0-commutative *B*-algebras.

In this note we investigate some properties of β -algebras and further relations with *B*-algebras. Especially, we show that if (X, -, +, 0) is a *B*^{*}-algebra, then (X, +) is a semigroup with identity 0. Finally we discuss some constructions of linear β -algebras in a field *K*.

2. Preliminaries

A β -algebra ([8]) is a non-empty set X with a constant 0 and two binary operations "+" and "-" satisfying the following axioms: for any $x, y, z \in X$,

(I) x - 0 = x,

(II)
$$(0-x) + x = 0$$
,

Received October 12, 2010.

2010 Mathematics Subject Classification. 06F35.

Key words and phrases. $\beta\text{-algebra},$ B-algebra, $B^*\text{-algebra},$ linear.

©2012 The Korean Mathematical Society

(III) (x - y) - x = x - (z + y).

Example 2.1 ([8]). Let $X := \{0, 1, 2, 3\}$ be a set with the following tables:

+	0	1	2	3	_	0	1	2	3
0	0	1	2	3	0	0	3	2	1
1	1	2	3	0	1	1	0	3	2
2	2	3	0	1	2	2	1	0	3
3	3	0	1	2	3	3	2	1	0

Then (X, +, -, 0) is a β -algebra.

Proposition 2.2 ([8]). Let (G, \cdot, e) be a group. If we define $x+y := x \cdot y, x-y := x \cdot y^{-1}, 0 := e$ for any $x, y \in G$, then (G, +, -, 0) is a β -algebra, called a groupderived β -algebra and denoted by A(G).

Proposition 2.3 ([8]). Let S be a set. If we define x + y := x, x - y := x and $0 \in S$, then (S, +, -, 0) is a β -algebra, called a left β -algebra and denoted by A_S .

It is known that the Cartesian product $X \times Y$ of a group-derived β -algebra X and a left β -algebra Y is a β -algebra which is neither group-derived nor a left β -algebra, and denoted by $A(G) \times A_S$.

We note that if a β -algebra is either A(G) or A_S , then it is also the case that

(IV) x + y = x - (0 - y).

Hence the condition (IV) holds for β -algebras of the type $A(G) \times A_S$ as well. Group-derived and left β -algebras part ways via the following conditions:

 $(V_a) x - x = 0$ (group derived),

 $(V_b) x - x = x$ (left).

We list two classes of β -algebras of special interest. A β -algebra X is said to be a B^* -algebra if (IV) and (V_b) hold. J. Neggers and H. S. Kim introduced the notion of B-algebra, and obtained various properties. An algebra (X, -, 0)is said to be a B-algebra ([7]) if it satisfies $(I), (V_a)$ and

(VI) (x - y) - z = x - (z - (0 - y))for any $x, y, z \in X$.

3. β -algebras and related topics

Given a β -algebra X, we denote $x^* := 0 - x$ for any $x \in X$.

Proposition 3.1. Let (X, +, -, 0) be a β -algebra with condition (IV). Then the following holds: for any $x, y, z \in X$,

(1) $x^* + y = x^* - y^*$, (2) $x^* + x = 0$, (3) $x^* - x^* = 0$, (4) $x^* - y^* = (y^* - x^*)^*$,

218

(5)
$$x + y = x - y^*$$
,

(6) $x = (x - y) + y = (x - y) - y^*$, (7) y - x = y' - x implies y = y'.

Proof. (1) By (IV), $x^* + y = (0 - x) + y = (0 - x) - (0 - y) = x^* - y^*$. (2) From (II) $0 = (0 - x) + x = x^* + x$. (3) If we let y := x in (1), then $x^* - x^* = x^* + x = 0$ by (2). (4) It follows from (III) and (1) that $x^* - y^* = (0 - x) - (0 - y) = 0 - ((0 - y) + x) = 0 - (y^* + x) = 0 - (y^* - x^*) = (y^* - x^*)^*$. (5) It follows from (IV) immediately. (6) $x = x - 0 = x - ((0 - y) + y) = (x - y) - y^* = (x - y) + y$. (7) Suppose that $y - x = y^* - x$. Then $y = (y - x) + x = (y^* - x) + x = y^*$, proving the proposition. □

Let (X, +, -, 0) be a β -algebra with condition (IV) and let $x \in X$. We denote sum of x as follows:

$$\begin{array}{ll} 0x = 0, & 1x = x, \\ 2x = x - (0 - x) = x + x, & 3x = 2x + x = (x + x) + x, \\ nx = (n - 1)x + x & \text{where } n \text{ is a natural number} \geq 2. \end{array}$$

Proposition 3.2. Let (X, +, -, 0) be a β -algebra with condition (IV). Then

$$(x - ny) + y = x - (n - 1)y$$

for any $x, y \in X$ where n is a natural number.

Proof. For any $x, y \in X$, (x-2y)+y = (x-(y+y))+y = ((x-y)-y)+y = x-y by Proposition 3.1(6).

$$(x - 3y) + y = (x - (2y + y)) + y$$

= $((x - y) - 2y) + y$
= $[(x - y) - (y + y)] + y$
= $[((x - y) - y) - y] + y$ [by (III)]
= $(x - y) - y$ [by Proposition 3.1(6)]
= $x - 2y$.

Using mathematical induction on n, we obtain (x - ny) + y = x - (n - 1)y for any natural number n.

Proposition 3.3. Let (X, -, 0) be a *B*-algebra with (IV). Then (X, -, +, 0) is a β -algebra.

Proof. (II) By applying (IV) and (V_a) , we obtain (0-x)+x = (0-x)-(0-x) = 0. (III) By applying (VI) and (IV), we obtain (x-y)-z = x - (z - (0-y)) = x - (z + y). Hence (X, -, +, 0) is a β -algebra.

Proposition 3.4. Let (X, -, +, 0) be a β -algebra with condition (IV). Then it satisfies the condition (VI).

Proof. Given $x, y, z \in X$, we have

$$\begin{aligned} x - (z - (0 - y)) &= (x - (z + y)) & \text{[by (IV)]} \\ &= (x - y) - z, & \text{[by (III)]} \end{aligned}$$

proving the proposition.

Lemma 3.5. Let (X, -, +, 0) be a B^* -algebra. Then for any $x \in X$, we have x = 0 - (0 - x).

Proof. For any $x \in X$, we have

$$\begin{aligned} x &= x - 0 & [by (I)] \\ &= x - [(0 - x) + x] & [by (II)] \\ &= (x - x) - (0 - x) & [by (III)] \\ &= 0 - (0 - x), & [by (V_a)] \end{aligned}$$

proving the lemma.

Theorem 3.6. If (X, -, +, 0) is a B^* -algebra, then (X, +) is a semigroup with identity 0.

Proof. We claim that (0-z) + (0-y) = 0 - (y+z). By applying (IV), Lemma 3.5 and (III), we obtain (0-z) + (0-y) = (0-z) - (0 - (0-y)) = (0-z) - y = 0 - (y+z). For any $x, y, z \in X$, we have

$$(x + y) + z = (x + y) - (0 - z)$$

= $(x - (0 - y)) - (0 - z)$
= $x - [(0 - z) + (0 - y)]$
= $x - [0 - (y + z)]$ [by claim]
= $x + (y + z)$.

Hence (X, +) is a semigroup. Since x + 0 = x - (0 - 0) = x - 0 = x and 0 + x = 0 - (0 - x) = x, 0 acts as an identity.

Corollary 3.7. Let (X, -, +, 0) be a B^{*}-algebra. If 0-x = 0-y, then x+y = 0.

Proof. Suppose that 0 - x = 0 - y. Then 0 = (0 - x) + x = (0 - y) + x = (0 - y) - (0 - x) = 0 - (x + y) by applying the claim in the proof of Theorem 3.6. Since 0 - 0 = 0, by applying Proposition 3.1(7), we obtain x + y = 0. \Box

4. Linear β -algebras

Let $(K, +, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Define two binary operations " \ominus, \oplus " on K as follows:

$$x \ominus y := \alpha + \beta x + \gamma y,$$
$$x \oplus y := A + Bx + Cy,$$

220

where $\alpha, \beta, \gamma, A, B, C \in K$ (fixed). Assume that (K, \ominus, \oplus, e) is a β -algebra. It is necessary to find proper solutions for two equations. Since $x = x \ominus e = \alpha + \beta x + \gamma e$, we obtain $(\beta - 1)x + (\alpha + \gamma e) = 0$, and hence $\beta = 1$ and $\alpha = -\gamma e$. It follows that

(1)
$$x \ominus y = x + \gamma(y - e)$$

Since $(e \ominus x) \oplus x = e$, we obtain

(2)
$$[A - Be(1 - \gamma) - e] + (B\gamma + C)x = 0, \forall x \in K.$$

It follows from (2) that $C = -B\gamma$, $A = [1 + B(1 - \gamma)]e$. Hence we have

(3) $x \oplus y = [1 + B(1 - \gamma)]e + B(x - \gamma y).$

Using (1) we obtain

(4) $(x \ominus y) \ominus z = x + \gamma(y + z - 2e)$

and

(5) $x \ominus (z \oplus y) = x + \gamma (z \oplus y - e).$

To satisfy condition (III), if $\gamma \neq 0$, then

$$z \oplus y - e = y + z - 2e,$$

i.e., $z \oplus y = z + y - e$. Hence $x \oplus y = x + y - e$ and B = C = 1. Since $C = -B\gamma$, $\gamma = -1$, and hence $x \oplus y = x - y + e$. In the case of $\gamma = 0$, we obtain from (1) and (3) that $x \oplus y = x$ and $x \oplus y = (1+B)e + Bx$, which leads to a contradiction, since $(e \oplus x) \oplus x = 1 + 2Be \neq e$. We summarize:

Theorem 4.1. Let $(K, +, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Then (K, \ominus, \oplus, e) is a β -algebra, where $x \ominus y = x - y + e$ and $x \oplus y = x + y - e$ for any $x, y \in K$.

We call such a β -algebra described in Theorem 4.1 a linear β -algebra.

If we let $\varphi : X \to X$ be a map defined by $\varphi(x) = e + bx$ for some $b \in K$. Then we have

$$\varphi(x+y) = e + b(x+y)$$

= $(e + bx) + (e + by) - e$
= $\varphi(x) \oplus \varphi(y)$

and

$$\varphi(x - y) = e + b(x - y)$$

= $(e + bx) - (e + by) + e$
= $\varphi(x) \ominus \varphi(y),$

so that $\varphi(0) = e$ implies $\varphi : (K, -, +, 0) \to (K, \ominus, \oplus, e)$ is a homomorphism of β -algebras, where "-" is usual subtraction in the field K. If $b \neq 0$, then $\psi : (K, \ominus, \oplus, e) \to (K, -, +, 0)$ defined by $\psi(x) := (x - e)/b$ is a homomorphism of

 β -algebras and the inverse mapping of the mapping φ , so that (K, \ominus, \oplus, e) and (K, -, +, 0) are isomorphic as β -algebras, i.e., there is only one isomorphism type in this case. We summarize:

Proposition 4.2. The β -algebra (K, \ominus, \oplus, e) discussed in Theorem 4.1 is unique up to isomorphism.

References

- P. J. Allen, J. Neggers, and H. S. Kim, *B-algebras and groups*, Sci. Math. Jpn. 59 (2004), no. 1, 23–29.
- [2] A. Iorgulescu, Algebras of Logic as BCK-Algebras, Editura ASE, Bucharest, 2008.
- [3] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125–130.
- [4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), no. 1, 1–26.
- [5] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62 (2005), no. 1, 7–12.
- [6] J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoon Sa, Seoul, 1994.
- [7] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21-29.
- [8] _____, On β -algebras, Math. Slovaca **52** (2002), no. 5, 517–530.
- [9] H. Yisheng, BCI-Algebras, Science Press, Beijing, 2006.

Young Hee Kim Department of Mathematics Chungbuk National University Cheongju 361-791, Korea *E-mail address*: yhkim@chungbuk.ac.kr

KEUM SOOK SO DEPARTMENT OF MATHEMATICS HALLYM UNIVERSITY CHUNCHEON 200-702, KOREA *E-mail address*: ksso@hallym.ac.kr