DOI QR코드

DOI QR Code

Mild and Efficient Tris(pentafluorophenyl)borane-catalyzed Sakurai Allylation of N-Benzyloxycarbonylamino p-Tolylsulfone with Allyltrimethylsilane

  • Received : 2011.12.20
  • Accepted : 2012.01.25
  • Published : 2012.04.20

Abstract

Tris(pentafluorophenyl)borane, $B(C_6F_5)_3$, was found to be an efficient catalyst for synthesis of N-Cbzhomoallylic amines using Sakurai allylation of N-benzyloxycarbonyl-amino p-tolylsulfones with allyltrimethylsilane.

Keywords

References

  1. Ovaa, H.; Stragies, R.; Van der Marel, G. A.; Van Boom, J. H.; Blechert, S. Chem. Commun. 2000, 1501-1502.
  2. Hunt, J. C. A.; Laurent, P.; Moody, C. J. Chem. Commun. 2000, 1771-1772.
  3. Felpin, F.-X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.; Villieras, J.; Lebreton, J. J. Org. Chem. 2001, 66, 6305. https://doi.org/10.1021/jo010386b
  4. Bloch, R. Chem. Rev. 1998, 98, 1407. https://doi.org/10.1021/cr940474e
  5. Wright, D. L.; Schulte, J. P., II; Page, M. A. Org. Lett. 2000, 2, 1847; https://doi.org/10.1021/ol005903b
  6. Jain, R. P.; Williams, R. M. J. Org. Chem. 2002, 67, 6361. https://doi.org/10.1021/jo025636i
  7. Ramachandran, P. V.; Burghardt, T. E.; Bland-Berry, L. J. Org. Chem. 2005, 70, 7911. https://doi.org/10.1021/jo0508200
  8. Besada, P.; Mamedova, L.; Thomas, C. J.; Costanzi, S.; Jacobson, K. A. Org. Biomol. Chem. 2005, 3, 2016. https://doi.org/10.1039/b416349d
  9. Hiemstra, H.; Speckamp, W. N. In Comprehensive Organic Synthesis; Fleming, I., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 1047.
  10. Ollevier, T.; Ba, T. Tetrahedron Lett. 2003, 44, 9003. https://doi.org/10.1016/j.tetlet.2003.09.221
  11. Smitha, G.; Miriyala, B.; Williamson, J. S. Synlett 2005, 839.
  12. Phukan, P. J. Org. Chem. 2004, 69, 4005. https://doi.org/10.1021/jo0498462
  13. Song, Q-Y.; Yang, B.-L.; Tian, S.-K. J. Org. Chem. 2007, 72, 5407. https://doi.org/10.1021/jo0704558
  14. Solin, N.; Wallner, O A.; Szabo, K. J. Org. Lett. 2005, 7, 689. https://doi.org/10.1021/ol0475010
  15. Vilaivan, T.; Winotapan, C.; Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org. Chem. 2005, 70, 3464. https://doi.org/10.1021/jo0477244
  16. Sun, X.-W.; Xu, M.- H.; Lin, G.-Q. Org. Lett. 2006, 8, 4979. https://doi.org/10.1021/ol062216x
  17. Fan, R.; Pu, D.; Wen, F.; Wu, J. J. Org. Chem. 2007, 72, 8994. https://doi.org/10.1021/jo7016982
  18. Fan, R.; Pu, D.; Wen, F.; Ye, Y.; Wang. X. J. Org. Chem. 2008, 73, 3623. https://doi.org/10.1021/jo800009t
  19. Kallstrom, S.; Saloranta, T.; Minnaard, A. J.; Leino, R. Tetrahedron Lett. 2007, 48, 6958.
  20. Li, J.; Minnaard, A. J.; Klein Gebbink, R. J. M.; Van Koten, G. Tetrahedron Lett. 2009, 50, 2232. https://doi.org/10.1016/j.tetlet.2009.02.187
  21. Fan, R.; Li, W.; Pu, D.; Zhang, L. Org. Lett. 2009, 11, 1425. https://doi.org/10.1021/ol900090f
  22. Mecozzi, T.; Petrini, M. J. Org. Chem. 1999, 64, 8970. https://doi.org/10.1021/jo9911544
  23. Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. 2006, 8, 4093. https://doi.org/10.1021/ol061604w
  24. Thirupathi. P.; Kim, S. S. J. Org. Chem. 2009, 74, 7755. https://doi.org/10.1021/jo9014613
  25. Thirupathi. P.; Kim, S. S. Eur. J. Org. Chem. 2010, 1798.
  26. Lee, S. H.; Santosh, T. K. Bull. Korean Chem. Soc. 2011, 32, 3738. https://doi.org/10.5012/bkcs.2011.32.10.3738
  27. Petrini, M. Chem. Rev. 2005, 105, 3949. https://doi.org/10.1021/cr050528s
  28. Petrini, M.; Torregiani, E. Tetrahedron Lett. 2005, 46, 5999. https://doi.org/10.1016/j.tetlet.2005.07.031
  29. Das, B.; Damodar, K.; Saritha, D.; Chowdhury, N.; Krishnaiah, M. Tetrahedron Lett. 2007, 48, 7930. https://doi.org/10.1016/j.tetlet.2007.09.077
  30. Das, B.; Damodar, K.; Shashikanth, B.; Srinivas, Y.; Kalavathi, I. Synlett 2008, 3133.
  31. Reingruber, R.; Baumann, T.; Dahmen, S.; Brase, S. Adv. Syn. Catal. 2009, 351, 1019. https://doi.org/10.1002/adsc.200800798
  32. Patrizia, G.; Dario, A.; Giorgio, B.; Letizia, S.; Giuseppe, B.; Paolo, M. Chem. Eur. J. 2010, 16, 6069. https://doi.org/10.1002/chem.200903217
  33. Giardina, A.; Mecozzi, T.; Petrini, M. J. Org. Chem. 2000, 65, 8277. https://doi.org/10.1021/jo001003x
  34. Schunk, S.; Enders, D. Org. Lett. 2001, 3, 3177. https://doi.org/10.1021/ol016487d
  35. Enders, D.; Oberbcrsch, S. Synlett 2002, 471.
  36. Petrini, M.; Torregiani, E. Tetrahedron Lett. 2005, 46, 5999. https://doi.org/10.1016/j.tetlet.2005.07.031
  37. Ollevier, T.; Li, Z. Org. Biomol. Chem. 2006, 4, 4440. https://doi.org/10.1039/b613331b
  38. Das, B.; Damodar, K.; Saritha, D.; Chowdhury, N.; Krishnaiah, M. Tetrahedron Lett. 2007, 48, 7930. https://doi.org/10.1016/j.tetlet.2007.09.077
  39. Kumar, R. S. C.; Reddy, G. V.; Babu, K. S.; Rao, J. M. Chem. Lett. 2009, 38, 564. https://doi.org/10.1246/cl.2009.564
  40. Ollevier, T.; Li, Z. Adv. Synth. Catal. 2009, 351, 3251. https://doi.org/10.1002/adsc.200900710
  41. Thirupathi. P.; Kim, S. S. Tetrahedron 2010, 66, 8623. https://doi.org/10.1016/j.tet.2010.09.038
  42. Blackwell, J. M.; Piers, W. E.; Parvez, M. Org. Lett. 2000, 2, 695. https://doi.org/10.1021/ol0000105
  43. Chandrasekhar, S.; Reddy, Ch. R.; Babu, B. N.; Chandrashekar, G. Tetrahedron Lett. 2002, 43, 3801. https://doi.org/10.1016/S0040-4039(02)00703-7
  44. Chandrasekhar, S.; Reddy, Ch. R.; Chandrashekar, G. Tetrahedron Lett. 2004, 45, 6481. https://doi.org/10.1016/j.tetlet.2004.06.120
  45. Srihari, P.; Yaragorla, S. R.; Basu, D.; Chandrasekhar, S. Synthesis 2006, 2646.
  46. Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179. https://doi.org/10.1021/jo000726d
  47. Blackwell, J. M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. E. Org. Lett. 2000, 2, 3921. https://doi.org/10.1021/ol006695q
  48. Chen, D.; Klankermayer, J. Chem. Commun. 2008, 2130.
  49. Shchepin, R.; Xu, C.; Dussault, P. Org. Lett. 2010, 12, 4772. https://doi.org/10.1021/ol1018757
  50. Chandrasekhar, S.; Chandrashekar, G.; Vijeender, K.; Reddy, M. S. Tetrahedron Lett. 2006, 47, 3474.
  51. Chandrasekhar, S.; Reddy, Ch. R.; Babu, B. N. J. Org. Chem. 2002, 67, 9080. https://doi.org/10.1021/jo0204045
  52. Thirupathi. P.; Loknath, N.; Lee, K. H. Tetrahedron 2011, 67, 7301. https://doi.org/10.1016/j.tet.2011.07.041

Cited by

  1. catalysed reduction of para-quinone methides and fuchsones to access unsymmetrical diaryl- and triarylmethanes: elaboration to beclobrate vol.15, pp.39, 2017, https://doi.org/10.1039/C7OB02007D
  2. Double π‐Bond Isomerization/Friedel–Crafts Reaction Involving γ‐­Amidocronates: Access to γ‐Aryl/Heteroaryl GABA Scaffolds and Dihydropyrido[1,2‐a]indo vol.2016, pp.4, 2012, https://doi.org/10.1002/ejoc.201501388