DOI QR코드

DOI QR Code

Theoretical Studies on 2-Hexylthieno[3,2-b]thiophene End-Capped Oligomers for Organic Semiconductor Materials

  • Park, Young-Hee (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Materials Science & Engineering and ERI, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2011.12.16
  • Accepted : 2012.01.05
  • Published : 2012.04.20

Abstract

The reorganization energy and the spectroscopic properties of 2,6-bis(5'-hexyl-thieno[3,2-b]thiophene-2'- yl)naphthalene (DH-TNT) and 2,6-bis(5'-hexyl-thieno[3,2-b]thiophene-2'-yl)anthracene (DH-TAT), which are composed of an acene unit and alkylated thienothiophene on both sides, as organic materials for display devices were calculated and the results were compared with experimental values. The lower reorganization energy of the DH-TAT over the DH-TNT calculated by the density functional theory is attributed to a smaller vibrational distortion because of the heavier building block of DH-TAT, and it shows a good field effect performance over the DH-TNT. The calculated spectra and the other spectroscopic characteristic of the compounds are well consistent with those of observed results.

Keywords

References

  1. Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. Science 1994, 265, 1684. https://doi.org/10.1126/science.265.5179.1684
  2. Horowitz, G.; Fichou, D.; Peng, X. Z.; Xu, Z. G.; Garnier, F. Solid State Commun. 1989, 72, 381. https://doi.org/10.1016/0038-1098(89)90121-X
  3. Horowitz, G. Adv. Mater. 1998, 10, 365. https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  4. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M. K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, A. J.; Meijer, E. W.; Herwig, P.; De Leeuw, D. M. Nature (London) 1999, 401, 685. https://doi.org/10.1038/44359
  5. Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y. Y.; Dodabalapur, A. Nature (London) 2000, 404, 478. https://doi.org/10.1038/35006603
  6. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  7. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539. https://doi.org/10.1038/347539a0
  8. Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J. R.; Roitman, D.; Stocking, A. Science 1996, 273, 884. https://doi.org/10.1126/science.273.5277.884
  9. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121. https://doi.org/10.1038/16393
  10. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. https://doi.org/10.1126/science.258.5087.1474
  11. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; R. H.; Moratti, S. C.; Holmes, A. B. Nature (London) 1995, 376, 498. https://doi.org/10.1038/376498a0
  12. Yu, G.; Wang, J.; McElvain, J.; Heeger, A. J. Adv. Mater. 1998, 10, 1431. https://doi.org/10.1002/(SICI)1521-4095(199812)10:17<1431::AID-ADMA1431>3.0.CO;2-4
  13. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  14. Katz, H. E. J. Mater. Chem. 1997, 7, 369. https://doi.org/10.1039/a605274f
  15. Nelson, S. F.; Lin, Y. Y.; Gundlach, D. J.; Jackson, T. N. Appl. Phys. Lett. 1998, 72, 1854. https://doi.org/10.1063/1.121205
  16. Klauk, H.; Gundlach, D. J.; Bonses, M.; Kuo, C. C.; Jackson, T. N. Appl. Phys. Lett. 2000, 76, 1692. https://doi.org/10.1063/1.126138
  17. Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169.
  18. Halik, M.; Klank, H.; Zschieschang, U.; Schmid, G.; Ponomarenko, S.; Kirchmeyer, S.; Weber, W. Adv. Mater. 2003, 15, 917. https://doi.org/10.1002/adma.200304654
  19. Katz, H. E.; Dodabalapur, A.; Torsi, L.; Elder, D. Chem. Mater. 1995, 7, 2238. https://doi.org/10.1021/cm00060a008
  20. Sirrinhaus, H.; Friend, R. H.; Li, X. C.; Moratti, S. C.; Holmes, A. B.; Feeder, N. Appl. Phys. Lett. 1997, 71, 3871. https://doi.org/10.1063/1.120529
  21. Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew. Chem. 2003, 115, 1191. https://doi.org/10.1002/ange.200390276
  22. Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. C. J. Am. Chem. Soc. 2002, 124, 8812. https://doi.org/10.1021/ja0266621
  23. Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett. 1996, 69, 3066. https://doi.org/10.1063/1.116841
  24. Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Adv. Mater. 2006, 18, 65. https://doi.org/10.1002/adma.200501654
  25. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378. https://doi.org/10.1021/ja039772w
  26. Fuchigami, H.; Tsumura, A.; Koezuka, H. Appl. Phys. Lett. 1993, 63, 1372. https://doi.org/10.1063/1.109680
  27. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.- L.; Ewbank, P. C.; Mann, K. R. Chem. Mater 2004, 16, 4436. https://doi.org/10.1021/cm049391x
  28. Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359. https://doi.org/10.1021/ar990114j
  29. Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. Adv. Mater. 2003, 15, 33. https://doi.org/10.1002/adma.200390003
  30. Hong, X. M.; Katz, H. E.; Lovinger, A. J.; Wang, B.-C.; Raghavachari, K. Chem. Mater. 2001, 13, 4686. https://doi.org/10.1021/cm010496z
  31. Carnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716. https://doi.org/10.1021/ja00072a026
  32. Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T.; Hedge, S.; Purushothaman, S. Synth. Met. 1998, 92, 47. https://doi.org/10.1016/S0379-6779(98)80021-0
  33. Kim, H. S.; Kim, Y, H,; Kim, T. H.; Noh, Y. Y.; Pyo, S.; Yi, M. H.; Kim, D. Y.; Kwon, S. K. Chem. Mater. 2007, 19, 3561. https://doi.org/10.1021/cm070053g
  34. Merlo, J. A.; Newman, C. R.; Gerlach, C.; Kelly, T. W.; Muyres, D. V.; Fritz, S. E.; Toney, M. F.; Frisbie, C. D. J. Am, Chem. Soc. 2005, 127, 3997. https://doi.org/10.1021/ja044078h
  35. Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406. https://doi.org/10.1021/ja043189d
  36. Lim, E.; Jung, B. J.; Shim, H. K. Macromol. 2003, 36, 4228.
  37. Lim, E.; Jung. B. J.; Lee, J.; Shim, H. K.; Lee, J. I.; Yang, Y. S.; Do, L. M. Macromol. 2005, 38, 4531. https://doi.org/10.1021/ma048128e
  38. Noh, Y. Y.; Azumi, R.; Goto, M.; Jung, B. J.; Lim, E.; Shim, H. K.; Yoshida, Y.; Yase, K.; Kim, D. Y. Chem. Mater. 2005, 17, 3861. https://doi.org/10.1021/cm0504889
  39. Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971 https://doi.org/10.1021/cr040084k
  40. Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. https://doi.org/10.1103/RevModPhys.65.599
  41. Bredas, J.-L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Proc. Natl. Acad. Sci. USA 2002, 99, 5804. https://doi.org/10.1073/pnas.092143399
  42. Park, Y. H.; Yang, K.; Kim, Y.-H.; Kwon, S. K. Bull. Korean Chem. Soc. 2007, 28, 1358. https://doi.org/10.5012/bkcs.2007.28.8.1358
  43. Balzani, V., Ed., Electron Transfer in Chemistry; Wiley-VCH: Weinheim, 2001.
  44. Bixon, M., Jortner, J., Eds.; Electron Transfer: From Isolated Molecules to Biomolecules, Adv. Chem. Phys. Wiley: New York, 1999; Vols. 106-107.
  45. Marcus, R. A. J. Chem. Phys. 1956, 24, 966 and 979. https://doi.org/10.1063/1.1742723
  46. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. https://doi.org/10.1016/0304-4173(85)90014-X
  47. Reimers, J. R. J. Chem. Phys. 2001, 115, 9103. https://doi.org/10.1063/1.1412875
  48. Silinsh, E. A.; Klimkans, A.; Larsson, S.; Capek, V. Chem. Phys. 1995, 198, 31.
  49. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adame, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; HeadGordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7: Gaussian, Inc., Pittsburgh, PA, 1998.
  50. Frisch, M. J. et al. Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh, PA, 2003.
  51. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  52. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  53. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218. https://doi.org/10.1063/1.477483
  54. Zerner, M. C.; Correa de Mello, P.; Hehenberger, M. Int. J. Quant. Chem. 1982, 21, 251. https://doi.org/10.1002/qua.560210123
  55. Hanson, L. K.; Fajer, J.; Thompson, M. A.; Zerner, M. C. J. Am. Chem. Soc. 1987, 109, 4728. https://doi.org/10.1021/ja00249a050
  56. Thompson, M. A.; Xerner, M. C. J. Am. Chem. Soc. 1991, 113, 8210. https://doi.org/10.1021/ja00022a003
  57. Foresman, J. B.; Head-Corden, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96, 135. https://doi.org/10.1021/j100180a030
  58. Sancho-Garcia, J. C.; Poulsen, J.; Gierschner, J.; Martinez-Alvárez, R.; Hennebicq, E.; Hanack, M.; Egelhaaf, H. J.; Oelkrug, D.; Beljonne, D.; Bredas, J. L.; Cornil, J. Adv. Mater. 2004, 16, 1193. https://doi.org/10.1002/adma.200400354
  59. Hennebicq, E.; Pourtois, G.; Scholes, G. D.; Herz, L. M.; Russell, D. M.; Silva, C.; Setayesh, S.; Grimsdale, A. C.; Muellen, K.; Brédas, J. L.; Beljonne, D. J. Am. Chem. Soc. 2005, 127, 4744. https://doi.org/10.1021/ja0488784
  60. Bredas, J. L.; Cornil, J.; Beljonne, D.; dos Santos, D. A.; Shuai, Z. Acc. Chem. Res. 1999, 32, 267. https://doi.org/10.1021/ar9800338
  61. Sun, M. T. Chem. Phys. 2006, 320, 155. https://doi.org/10.1016/j.chemphys.2005.07.014
  62. Cornil, J.; Gueli, I.; Dkhissi, A.; Sancho-Garcia, J. C.; Hennebicq, E.; Calbert, J. P.; Lemaur, V.; Beljonne, D.; Bredas, J. L. J. Chem. Phys. 2003, 118, 6615. https://doi.org/10.1063/1.1561054
  63. Tretiak, S.; Igumenshchev, K.; Chernyak, V. Phys. Rev. B 2005, 71, 033201. https://doi.org/10.1103/PhysRevB.71.033201
  64. Sun, M. T.; Pullerits, T.; Kjellberg, P.; Pullerits, W. J. D.; Han, K. L. J. Phys. Chem. A 2006, 110, 6324. https://doi.org/10.1021/jp060275m
  65. Sun, M. T. J. Chem. Phys. 2006, 124, 054903. https://doi.org/10.1063/1.2145747
  66. Sun, M. T.; Ma, F. C. J. Theoret. Comput. Chem. 2006, 5, 163. https://doi.org/10.1142/S0219633606002155
  67. Ando, S.; Nishida, J. I.; Fujiwara, E.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. Chem. Mater. 2005, 17, 1261. https://doi.org/10.1021/cm0478632