DOI QR코드

DOI QR Code

Study of heat transfer to the implant-bone interface induced by grinding of occlusal surface of implant gold prosthesis

금 합금 보철물의 교합면 삭제로 인한 임플란트-골 계면으로의 열전달에 관한 연구

  • Jo, Jae-Young (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kang, Sun-Nyo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 조재영 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 강선녀 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 정창모 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 윤미정 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 전영찬 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2011.12.23
  • Accepted : 2012.01.06
  • Published : 2012.01.31

Abstract

Purpose: The purpose of this study was to analyze temperature change along the implant-bone interface induced by grinding the occlusal surface of implant gold prosthesis and to compare the temperature generated by grinding of prosthesis with different cooling methods. Materials and methods: The experimental gold prostheses were fabricated with dental gold alloy and castable abutment. The prostheses had 3 cylindrical protrusions on the occlusal surface with 1mm in height. Temperature was measured using 16 thermocouple wires attached to the implant fixture surface and the fixture was embedded in an acrylic resin block inside the $37^{\circ}C$ water bath. Cylinders were grinded for a period of 30 second with a low-speed handpiece with green stone point. One cylindrical protrusion was grinded without cooling, the second one was grinded with air blow, and the third one was grinded with water-spray. Results: The mean maximum temperature was measured more than $47^{\circ}C$ of the implant and the maximum temperature was measured at the cervical portion of the implant in the group without cooling. There was statistically significant difference between the group without cooling and the groups with cooling (P<.05). However, there was no significant difference at all portion of implant in the groups with cooling (P>.05). Conclusion: The results of this study support that the grinding of implant gold prosthesis without cooling may damage the peri-implant tissue. The continuous use of air blow and water-spray adjacent to prosthesis during the grinding of implant gold prosthesis may prove to be beneficial for cooling of the implant.

연구 목적: 임플란트-골 계면에서 발생하는 과도한 열은 골유착을 저해하여 임플란트의 실패를 유발한다. 이에 이번 연구에서는 임플란트 금 합금 보철물의 교합면 삭제시 임플란트-골 계면으로의 열전달 양상과 냉각 방식의 효율성을 알아 보고자 하였다. 연구 재료 및 방법: 온도 감지 장치 제작을 위하여 Internal cone 연결형태의 임플란트에 16개의 K형 열전대를 부착하여 아크릴릭 레진에 포매하였다. 치과용 금 합금과 주조용 abutment를 사용하여 교합면에 3개의 요철을 가지는 시편을 10개 제작하였고, 연결 나사를 이용하여 임플란트와 연결한 뒤 온도 감지 장치를 $37^{\circ}C$ 유지되는 수조에 위치시켰다. 저속 핸드피스와 green stone bur를 이용하여 30초 동안 보철물의 요철을 삭제하였는데, 무냉각군, 공기 냉각 군, 물 분사 냉각 군으로 나누어 요철을 삭제하였다. 보철물이 삭제 되는 동안 임플란트의 부위별로 온도가 0.05초 간격으로 기록되었고, 삭제를 멈춘 뒤에도 무 냉각 군의 경우 임계 온도인 $47^{\circ}C$ 이하로 온도가 하강할 때까지, 공기 냉각군과 물 분사 냉각군의 경우 삭제 중단 후 30초 동안 추가로 온도를 기록하였다. 냉각 방식에 따른 임플란트-골 계면의 온도를 알아보고, 임플란트의 부위별 온도변화의 유의차를 알아보기 위하여 one-way ANOVA를 실시하였고, Turkey HSD 이용하여 95% 유의수준에서 사후 검증하였다. 결과: 무 냉각 군은 임플란트-골 계면의 온도가 $47^{\circ}C$ 이상으로 상승하였으며, 임플란트의 경부에서 유의하게 높은 열이 측정되었다(P>.05). 공기냉각군과물분사냉각군은 임플란트-골 계면의 온도가 $47^{\circ}C$ 이하로 유지되었다. 무 냉각 군에서 임플란트 경부의 온도가 $47^{\circ}C$에 도달되는 데는 약 $10.8{\pm}1.5$초가 소요되었다. 공기 냉각 군과 물 분사 냉각 군 사이에서는 임플란트-골 계면 온도의 유의차가 없었다(P>.05). 결론: 이상의 결과로부터 임플란트 금 합금 보철물의 교합면 삭제 시, 임플란트 주위 조직에 위해를 가할 수 있는 임계 온도 이상의 열이 발생했음을 알 수 있었으며, 냉각 방식은 공기 냉각과 물 분사 냉각 모두 효과적이라고 생각된다.

Keywords

References

  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  2. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Kreisler M, Al Haj H, d'Hoedt B. Temperature changes at the implant- bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont 2002;15:582-587.
  4. Huh JB, Eckert SE, Ko SM, Choi YG. Heat transfer to the implant-bone interface during preparation of a zirconia/alumina abutment. Int J Oral Maxillofac Implants 2009;24:679-683.
  5. Eriksson AR, Albrektsson T. Temperature threshold levels for heatinduced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-107. https://doi.org/10.1016/0022-3913(83)90174-9
  6. Eriksson A, Albrektsson T, Grane B, McQueen D. Thermal injury to bone. A vital-microscopic description of heat effects. Int J Oral Surg 1982;11:115-121. https://doi.org/10.1016/S0300-9785(82)80020-3
  7. Scarano A, Piattelli A, Assenza B, Carinci F, Di Donato L, Romani GL, Merla A. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills. Clin Implant Dent Relat Res 2011;13:319-323. https://doi.org/10.1111/j.1708-8208.2009.00209.x
  8. Sener BC, Dergin G, Gursoy B, Kelesoglu E, Slih I. Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implants Res 2009;20:294-298. https://doi.org/10.1111/j.1600-0501.2008.01643.x
  9. Scarano A, Carinci F, Quaranta A, Di Iorio D, Assenza B, Piattelli A. Effects of bur wear during implant site preparation: an in vitro study. Int J Immunopathol Pharmacol 2007; 20:23-26.
  10. Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg 2002;60:1160-1169. https://doi.org/10.1053/joms.2002.34992
  11. Benington IC, Biagioni PA, Briggs J, Sheridan S, Lamey PJ. Thermal changes observed at implant sites during internal and external irrigation. Clin Oral Implants Res 2002;13:293-297. https://doi.org/10.1034/j.1600-0501.2002.130309.x
  12. Brisman DL. The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 1996;11:35-37.
  13. Sumer M, Misir AF, Telcioglu NT, Guler AU, Yenisey M. Comparison of heat generation during implant drilling using stainless steel and ceramic drills. J Oral Maxillofac Surg 2011;69: 1350-1354. https://doi.org/10.1016/j.joms.2010.11.001
  14. Misir AF, Sumer M, Yenisey M, Ergioglu E. Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg 2009;67:2663-2668. https://doi.org/10.1016/j.joms.2009.07.056
  15. Patel Z, Geerts GA. Temperature changes along a dental implant. Int J Prosthodont 2011;24:58-63.
  16. Ormianer Z, Feuerstein O, Assad R, Samet N, Weiss EI. In vivo changes in dental implant temperatures during hot beverage intake: a pilot study. Implant Dent 2009;18:38-45. https://doi.org/10.1097/ID.0b013e318192e143
  17. Feuerstein O, Zeichner K, Imbari C, Ormianer Z, Samet N, Weiss EI. Temperature changes in dental implants following exposure to hot substances in an ex vivo model. Clin Oral Implants Res 2008;19:629-633. https://doi.org/10.1111/j.1600-0501.2007.01502.x
  18. Mouhyi J, Sennerby L, Nammour S, Guillaume P, Van Reck J. Temperature increases during surface decontamination of titanium implants using CO2 laser. Clin Oral Implants Res 1999;10:54-61. https://doi.org/10.1034/j.1600-0501.1999.100107.x
  19. Bragger U, Wermuth W, Torok E. Heat generated during preparation of titanium implants of the ITI Dental Implant System: an in vitro study. Clin Oral Implants Res 1995;6:254-259. https://doi.org/10.1034/j.1600-0501.1995.060409.x
  20. Gross M, Laufer BZ, Ormianar Z. An investigation on heat transfer to the implant-bone interface due to abutment preparation with high-speed cutting instruments. Int J Oral Maxillofac Implants 1995;10:207-212.
  21. Gabay E, Cohen O, Machtei EE. Heat production during prosthetic preparation of a one-piece dental implant. Int J Oral Maxillofac Implants 2010;25:1131-1136.
  22. Cohen O, Gabay E, Machtei EE. Cooling profile following prosthetic preparation of 1-piece dental implants. J Oral Implantol 2010;36:273-279. https://doi.org/10.1563/AAID-JOI-D-09-00061
  23. Nissan J, Gross M, Ormianer Z, Barnea E, Assif D. Heat transfer of impression plasters to an implant-bone interface. Implant Dent 2006;15:83-88. https://doi.org/10.1097/01.id.0000202424.82293.7b
  24. Ormianer Z, Laufer BZ, Nissan J, Gross M. An investigation of heat transfer to the implant-bone interface related to exothermic heat generation during setting of autopolymerizing acrylic resins applied directly to an implant abutment. Int J Oral Maxillofac Implants 2000;15:837-842.
  25. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-146.
  26. Esposito M, Hirsch J, Lekholm U, Thomsen P. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature. Int J Oral Maxillofac Implants 1999;14:473-490.
  27. Esposito M, Thomsen P, Ericson LE, Sennerby L, Lekholm U. Histopathologic observations on late oral implant failures. Clin Implant Dent Relat Res 2000;2:18-32. https://doi.org/10.1111/j.1708-8208.2000.tb00103.x
  28. Lundskog J. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg 1972;9:1-80.