DOI QR코드

DOI QR Code

Molecular Typing in Public Health Laboratories: From an Academic Indulgence to an Infection Control Imperative

  • Received : 2011.10.25
  • Accepted : 2011.11.15
  • Published : 2012.01.30

Abstract

Using three Austrian case studies, the variegated applications of molecular typing in today's public health laboratories are discussed to help illustrate preventive management strategies relying on DNA subtyping. DNA macrorestriction analysis by pulsed field gel electrophoresis has become the gold standard for subtyping of food borne pathogens like listeria, salmonella, campylobacter and Bacillus cereus. Using a Salmonella Mbandaka outbreak from the year 2010 as example, it is shown how the comparison of patterns from human isolates, food isolates, animal isolates and feed isolates can allow to identify and confirm a source of disease. An epidemiological connection between the simultaneous occurrence of tuberculosis in cattle and deer with cases of human tuberculosis due to Mycobacterium caprae in 2010 was excluded using mycobacterial interspersed repetitive units variable-number tandem repeats subtyping. Also in 2010, multilocus sequence typing with nonselective housekeeping genes, the so-called sequence based typing protocol, was used to elucidate connections between an environmental source (a hospital drinking water system) and a case of legionellosis. During the last decades, molecular typing has evolved to become a routine tool in the daily work of public health laboratories. The challenge is now no longer to simply type microorganisms, but to type them in a way that allows for data exchange between public health laboratories all over the world.

Keywords

References

  1. Berger S. Bakterien in Krieg und Frieden: eine Geschichte der medizinischen Bakteriologie in Deutschland 1890-1933. Gottingen: Wallstein Verlag; 2009, p. 143-170 (German).
  2. Cohen ML. Resurgent and emergent disease in a changing world. Br Med Bull 1998;54(3):523-532.
  3. Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytia-Trees E, et al. PulseNet USA: a five-year update. Foodborne Pathog Dis 2006;3(1):9-19.
  4. Choi KB, Lim HS, Lee K, Ha GY, Jung KH, Sohn CK. Epidemiological investigation for outbreak of food poisoning caused by Bacillus cereus among the workers at a local company in 2010. J Prev Med Public Health 2011;44(2):65-73 (Korean).
  5. Schwartz DC, Cantor CR. Separation of yeast chromosomesized DNAs by pulsed-field gradient gel electrophoresis. Cell 1984;37(1):67-75.
  6. Graves LM, Swaminathan B, Hunter SB. Subtying Listeria monocytogenes. In: Ryser ET, Marth EH, editors. Listeria, listeriosis and food safety. 3rd ed. New York: CRC Press; 2007, p. 283-304.
  7. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, et al. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 2006;3(1):59-67.
  8. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 2005;43(3):1045-1050.
  9. Vincent V, Brown-Elliott BA, Jost KC, Wallace RJ. Mycobacterium: phenotypic and genotypic identification. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington DC: ASM Press; 2003, p. 560-584.
  10. Van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 1993;31(2):406-409.
  11. Sougakoff W. Molecular epidemiology of multidrugresistant strains of Mycobacterium tuberculosis. Clin Microbiol Infect 2011;17(6):800-805.
  12. Lindstedt BA. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 2005;26(13):2567-2582.
  13. Prodinger WM, Brandstatter A, Naumann L, Pacciarini M, Kubica T, Boschiroli ML, et al. Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping. J Clin Microbiol 2005;43(10):4984-4992.
  14. Nindler P, Paschinger A. Bauern fordern Tbc-Freiheit: Rotwild vor Totalabschuss. Tiroler Tageszeitung 2011 [cited 2011 Dec 20]. Available from: http://www.tt.com/csp/cms/sites/tt/Tirol/2448885-2/bauern-fordern-tbcfreiheit-- rotwild-vor-totalabschuss.csp (German).
  15. Rotwild im AuBerfern von TBC befallen: MaBnahmen notwendig. Tiroler Tageszeitung 2011 [cited 2011 Dec 20]. Available from: http://www.tt.com/csp/cms/sites/tt/ %C3%9Cberblick/Chronik/ChronikTirol/2452482- 6/rotwild-im-au%C3%9Ferfern-von-tbc-befallen--ma%C3%9Fnahmen-notwendig.csp (German).
  16. Salgado-Voss AS, Much P, Rendi-Wagner P, Herzog U. Bericht uber Zoonosen und ihre Erreger in osterreichim Jahr 2010 [cited 2011 Dec 20]. Available from: http:// www.ages.at/uploads/media/Zoonosenbroschuere_2010.pdf (German).
  17. Amt der Vorarlberger Landesregierung. Resume zum Jagdjahr 2010/2011 [cited 2011 Dec 20]. Available from: http://www.vorarlberg.at/vorarlberg/landwirtschaft_forst/la ndwirtschaft/jagd/neuigkeiten_mitbild_/r_sum_zumjagdja hr2010_201.htm (German).
  18. Amt der Tiroler Landesregierung. Tbc im Oberen Lechtal gemeinsam bekampfen [cited 2011 Dec 20]. Available from: http://www.tirol.gv.at/presse/meldungen/meldung/ artikel/tbc-im-oberen-lechtal-gemeinsam-bekaempfen/ ?no_cache=1&cHash=a75c9d6810 (German).
  19. Fry NK, Bangsborg JM, Bergmans A, Bernander S, Etienne J, Franzin L, et al. Designation of the European Working Group on Legionella Infection (EWGLI) amplified fragment length polymorphism types of Legionella pneumophila serogroup 1 and results of intercentre proficiency testing using a standard protocol. Eur J Clin Microbiol Infect Dis 2002;21(10):722-728.
  20. Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiol 1999;7(12):482-487.
  21. Gaia V, Fry NK, Afshar B, Luck PC, Meugnier H, Etienne J, et al. Consensus sequence-based scheme for epidemiological typing of clinical and environmental isolates of Legionella pneumophila. J Clin Microbiol 2005;43(5): 2047-2052.
  22. Ratzow S, Gaia V, Helbig JH, Fry NK, Luck PC. Addition of neuA, the gene encoding N-acylneuraminate cytidylyl transferase, increases the discriminatory ability of the consensus sequence-based scheme for typing Legionella pneumophila serogroup 1 strains. J Clin Microbiol 2007;45(6):1965-1968.
  23. Pavlic M, Allerberger F, Dierich MP, Prodinger WM. Simultaneous infection with two drug-susceptible Mycobacterium tuberculosis strains in an immunocompetent host. J Clin Microbiol 1999;37(12):4156-4157.
  24. European Centre for Disease Prevention and Control. Annual report of the director 2010. Stockholm: European Centre for Disease Prevention and Control; 2011, p.
  25. Hoorfar J, Christensen B, Pagotto F, Rudi K, Bhunia A, Giffiths M. Future trends in rapid methods: where is the field moving, and what should we focus on? In: Hoorfar J, editor. Rapid detection, characterization, and enumeration of foodborne pathogens. Washington DC: ASM press; 2011, p. 413-420.
  26. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011;331(6016): 430-434.
  27. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 2010;107(16):7527-7532.

Cited by

  1. Strukturelle Voraussetzungen und Bedingungen für eine effektive mikrobiologische Diagnostik bei Ausbruchsgeschehen vol.56, pp.1, 2012, https://doi.org/10.1007/s00103-012-1579-z
  2. Same-Day Subtyping of Campylobacter jejuni and C. coli Isolates by Use of Multiplex Ligation-Dependent Probe Amplification–Binary Typing vol.52, pp.9, 2012, https://doi.org/10.1128/jcm.00815-14
  3. Mycobacterium caprae infection in humans vol.12, pp.12, 2014, https://doi.org/10.1586/14787210.2014.974560
  4. Listeriosis cluster in Sydney linked to hospital food vol.202, pp.8, 2015, https://doi.org/10.5694/mja14.00913
  5. Legionella detection and subgrouping in water air-conditioning cooling tower systems in Kuwait vol.22, pp.13, 2012, https://doi.org/10.1007/s11356-015-4226-z
  6. Molecular typing of bacteria for epidemiological surveillance and outbreak investigation / Molekulare Typisierung von Bakterien für die epidemiologische Überwachung und Ausbruchsabkläru vol.67, pp.4, 2016, https://doi.org/10.1515/boku-2016-0017
  7. Distribution of Salmonella Serovars along the Food Chain in Poland, 2010–2015 vol.61, pp.2, 2012, https://doi.org/10.1515/jvetres-2017-0022
  8. Ground water as the source of an outbreak of Salmonella Enteritidis vol.7, pp.3, 2012, https://doi.org/10.1016/j.jegh.2017.05.001