References
- 김병혁, 조대현, 성열붕, 안치용, 윤병대, 고성철, 오희목, 김희식, 2010, DGGE를 이용한 PCE 및 TCE의 혐기적 탈염소화 군집의 미생물 군집분석, 한국미생물생명공학회, 38(4), 448-454.
- 식품의약품안전청, 2010, 트리클로로에틸렌 RISK PROFILE.
- 배연욱, 김두일, 박재우, 2008, 영가철 및 철환원균을 이용한 2가 산화철 매질에 의한 TCE 제거 연구-모델수립, 대한환경공학회, 30(11), 1146-1153.
- 신화영, 박재우, 2005, 철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구, 대한환경공학회, 27(2), 23-129.
- 안상우, 김영주, 천석영, 이시진, 박재우, 장순웅, 2010, Headspace SPME GC/FID를 이용한 Chlorinated Solvents의 경쟁적 추출효과에 관한 연구, 한국지반환경공학회, 11(5), 61-67.
- 한국환경산업기술원, 2009, 지하수 DNAPL 오염원 정화기술 기술동향 분석보고서.
- 환경부, 2009, 메타게놈을 이용한 탈염소화 생촉매 개발.
- 환경부, 2010, 2009년 지하수 수질측정망 운영결과.
- An, Y., Li, T., Jin, Z., Dong, M., and Li, Q., 2010, Nitrate degradation and kinetic analysis of the denitrification system composed of iron nanoparticles and hydrogenotrophic bacteria, Desalination, 252(1-3), 71-74. https://doi.org/10.1016/j.desal.2009.10.023
- Arnold, W.A. and Roberts, A.L., 2000, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environmental Science & Technology, 34(9), 1794-1805. https://doi.org/10.1021/es990884q
- Auffan, M.L., Achouak, W., Rose, J., Roncato, M.A., Chaneec, C., Waite, D.T., Masion, A., Woicik, J.C., Wiesner, M.R., and Bottero, J.Y., 2008, Relation between the redox state of ironbased nanoparticles and their cytotoxicity toward Escherichia coli, Environmental Science & Technology, 42(17), 6730-6735. https://doi.org/10.1021/es800086f
- Fennell, D.E., Gossett, J.M., and Zinder, S.G., 1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environmental Science & Technology, 31(3), 918-926. https://doi.org/10.1021/es960756r
- Giasuddin, A.B.M., Kanel, S.R., and Choi, H., 2007, Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal, Environmental Science & Technology, 41(6), 2022-2027. https://doi.org/10.1021/es0616534
- Grieger, K.D., Fjordboge, A., Hartmann, N.B., Eriksson, E., Bjerg, P.L., and Baun, A., 2010, Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?, Journal of Contaminant Hydrology, 118(3-4), 165-183. https://doi.org/10.1016/j.jconhyd.2010.07.011
- Haest, P.J., Philips, J., Springael, D., and Smolders, E., 2011, The reactive transport of trichloroethene is influenced by residence time and microbial numbers, Journal of Contaminant Hydrology, 119(1-4), 89-98. https://doi.org/10.1016/j.jconhyd.2010.09.011
- Haest, P.J., Springael, D., and Smolders, E., 2010, Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models, Water Research, 44(1), 331-339. https://doi.org/10.1016/j.watres.2009.09.033
- Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J., and Sedlak, D.L., 2008, Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli, Environmental Science & Technology, 42(13), 4927-4933. https://doi.org/10.1021/es800408u
- Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., and Jiang, G., 2009, Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology, Ecotoxicology and Environmental Safety, 72(3), 684-692. https://doi.org/10.1016/j.ecoenv.2008.09.027
- Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., and Lowry, G.V., 2005, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environmental Science & Technology, 39(5), 1338-1345. https://doi.org/10.1021/es049195r
- Martin, J.E., Herzing, A.A., Yan, W., Li, X.-q., Koel, B.E., Kiely, C.J., and Zhang, W.-x., 2008, Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles, Langmuir, 24(8), 4329-4334. https://doi.org/10.1021/la703689k
- Park, Y.D., Park, C.S., and Park, J.W., Interaction between iron reducing bacteria and nano-scale zero valent iron, 2010, Sustain Environmental Research, 20(4), 233-238.
- Phenrat, T., Schoenfelder, D., Losi, M., Yi, J., Peck Steven, A., and Lowry Gregory, V., 2009, Treatability study for a TCE contaminated area using nanoscale- and microscale-zerovalent iron particles: reactivity and reactive life time. In Environmental Applications of Nanoscale and Microscale Reactive Metal Particles: American Chemical Society.
- Richards, F.J., 1959, A flexible growth function for empirical use, Journal of Experimental Botany, 10(2), 290-301. https://doi.org/10.1093/jxb/10.2.290
- Schrick, B., Blough, J.L., Jones, A.D., and Mallouk, T.E., 2002, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chemistry of Materials, 14(12), 5140-5147. https://doi.org/10.1021/cm020737i
- Sung, Y., Fletcher, K.E., Ritalahti, K.M., Apkarian, R.P., Ramos-Hernandez, N., Sanford, R.A., Mesbah, N.M., and Loffler, F.E., 2006, Geobacter lovleyi sp. nov. Strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium, Appl. Environ. Microbiol., 72(4), 2775-2782. https://doi.org/10.1128/AEM.72.4.2775-2782.2006
- Wang, C.-B. and Zhang, W.-x., 1997, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environmental Science & Technology, 31(7), 2154-2156. https://doi.org/10.1021/es970039c
- Xiu, Z.-m., Jin, Z.-h., Li, T.-l., Mahendra, S., Lowry, G.V., and Alvarez, P.J.J., 2010, Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene, Bioresource Technology, 101(4), 1141-1146. https://doi.org/10.1016/j.biortech.2009.09.057
- Yu, S., Dolan, M.E., and Semprini, L., 2005, Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures, Environmental Science & Technology, 39(1), 195-205. https://doi.org/10.1021/es0496773