
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012                                                    229 

Copyright ⓒ 2012 KSII 

 

DOI: 10.3837/tiis.2012.01.013 

 

Data Alignment for Data Fusion in Wireless 
Multimedia Sensor Networks Based on 

M2M 
 

Jose Roberto Perez Cruz, Saul E. Pomares Hernandez* and Enrique Munoz de Cote 
 Computer Science Department, National Institute of Astrophysics,  

Optics and Electronics (INAOE), Puebla México 

[e-mail: {jrpc, spomares, jemc@inaoep.mx] 

*Corresponding author: Saul E. Pomares Hernandez 

 

Received August 31, 2011; Revised November 5, 2011; Accepted November 28, 2011; 

Published January 31, 2012 

 

 

Abstract 
 

Advances in MEMS and CMOS technologies have motivated the development of low 

cost/power sensors and wireless multimedia sensor networks (WMSN). The WMSNs were 

created to ubiquitously harvest multimedia content. Such networks have allowed researchers 

and engineers to glimpse at new Machine-to-Machine (M2M) Systems, such as remote 

monitoring of biosignals for telemedicine networks. These systems require the acquisition of a 

large number of data streams that are simultaneously generated by multiple distributed devices. 

This paradigm of data generation and transmission is known as event-streaming. In order to be 

useful to the application, the collected data requires a preprocessing called data fusion, which 

entails the temporal alignment task of multimedia data. A practical way to perform this task is 

in a centralized manner, assuming that the network nodes only function as collector entities. 

However, by following this scheme, a considerable amount of redundant information is 

transmitted to the central entity. To decrease such redundancy, data fusion must be performed 

in a collaborative way. In this paper, we propose a collaborative data alignment approach for 

event-streaming. Our approach identifies temporal relationships by translating temporal 

dependencies based on a timeline to causal dependencies of the media involved. 
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1. Introduction 

Recent advances in MEMS and CMOS technologies have motivated the development of 

low-cost and low-power devices (sensors) and wireless multimedia sensor networks (WMSN). 

The WMSNs were created to interconnect and to communicate devices that are able to 

ubiquitously harvest audio and video streams, in addition to still images and scalar data from 

physical environments. The sensor nodes in a WMSN have limited communication ranges, as 

well as constraints in energy and resources. A WMSN is planned to require minimal human 

intervention.  

WMSNs have drawn the attention of research and industrial communities since this kind of 

networks has allowed them to glimpse at new M2M Systems, such as remote monitoring of 

biosignals for telemedicine networks, multimedia surveillance systems, and environmental 

monitoring systems [1], among others. 

Such systems require the acquisition of a large number of data streams that are 

simultaneously generated and transmitted by multiple distributed devices. This paradigm of 

data generation is known as event-streaming, which represents the generation and the 

transmission of data as a continuous stream of events reported by multiple sources [2][3][4][5].  

For these reasons, in order to be useful to the application, all the collected data needs a 

preprocessing called data fusion
1
. For example, suppose that there is a network of fixed 

wireless cameras along a way, with the aim of capturing on video the path followed by a car 

(see Fig. 1). As each camera has a limited vision field, the resultant single video of the path 

must be formed from the fusion of the multiple possible redundant views collected by different 

cameras. The redundant views result from the vision fields of two or more cameras that 

overlap (see Fig. 1). 
 

 

Fig. 1. In-network processing scenario. 

 

Two main tasks in the data fusion process are the temporal alignment [6] and the spatial 

correlation [7][8] of the collected data. Temporal alignment consists in performing data 

temporal adjustments by identifying common temporal references (e.g. global timeline), 

whereas spatial correlation consists in establishing data spatial relationships mainly based on a 

common overlapped sensing area.  

In this paper we address only the temporal alignment problem. A practical way to perform 

this task is in a centralized manner, assuming that the sensor nodes only act as collector entities 

                                                           
1 Data fusion refers to the alignment, association, correlation, filtration and aggregation of the collected data [10], 

[11]. 
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[6]. However, by following this scheme, a considerable amount of redundant information is 

transmitted to the central entity (sink). 

According to Akyildiz et al. [1] and Gavalas et al. [9], data fusion must be performed in a 

collaborative way to reduce the redundancy in the transmitted data, thereby enhancing the use 

of network resources. This kind of collaborative processing is called in-network processing. 

For the data alignment problem, the in-network processing implies that the cameras 

collaborate directly in order to detect common temporal dependencies among the harvested 

data. 

Unfortunately, the characteristics and restrictions of a WMSN make it difficult to establish a 

common temporal reference, such as a global timeline, mainly due to: 1) the resource 

constraints, 2) the channel variability, 3) the dynamicity in the topology, 4) the lack of 

perfectly synchronized physical clocks, 5) the absence of shared memory, and 6) the 

asynchronous nature of the event-streaming [4]. 

In the absence of a global timeline, the techniques based on the happened-before relation 

proposed by Lamport [12] result very useful to detect and to ensure temporal relationships 

among multimedia data [4][13][14]. In these works, the temporal relationships established 

according to the timeline are replaced by causal precedence relationships. Such solutions 

cannot be applied to event-streaming data alignment since they are all designed to perform 

temporal alignment among local-streams, where each local-stream is composed of events that 

originate from the same source. 

In this paper, we propose a collaborative data alignment approach for event-streaming 

suitable for data fusion in WMSN. Our approach identifies temporal relationships by 

translating temporal dependencies based on a timeline to causal dependencies of the media 

involved by avoiding the use of global references. 

The rest of the paper is organized as follows. Section 2 presents the system model and 

background. Section 3 introduces the In-network data alignment approach. Finally, Section 4 

concludes with a few remarks. 

2. System Model and Background 

2.1 System Model 

We specify a WMSN as a distributed system, which consists of three main base components: 

the processes, the messages, and the events.  

• Processes. Each sensor node associated to the WMSN is represented as an individual process. 

Hence, a WMSN has an associated set of processes P  that communicate with each other by 

message passing. A process can only send one message at a time. 

• Messages. We consider a finite set of messages M sent by a process Pp . 

• Events. An event represents an instant execution performed by a process. In a WMSN, a 

process can only execute two kinds of events: internal events and external events. An internal 

event is an action that changes the state of a process and cannot be seen by other processes. An 

external event is also an action in a process, but it is seen by other processes, thereby affecting 

the state of the global system. For communication interactions, there are three types of external 

events: send, receive and delivery. For our problem of data alignment, we only consider the 

send and delivery external events. The send event refers to the emission of a message executed 

by a process. The delivery event refers to the execution performed by a process to present the 

received information to an application of another process. 
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2.2 Happened-before Relation 

A suitable way to establish precedence dependencies among events in an asynchronous 

distributed system is the happened-before relation (HBR) defined by Leslie Lamport [8]. This 

relation establishes the rules to determine whether an event is the cause or the effect of another 

event, without the use of global references. 
 

Definition 1: The causal relation “” is the smallest relation on a set of events E satisfying 

the following conditions: 

1. If a and b are events belonging to the same process, and a was originated before b, 

then ba . 

2. If a is the sending of a message by one process, and b is the receipt of the same 

message in another process, then ba . 

3. If ba  and cb , then ca . 

Based on Definition 1, Lamport defined that two events are concurrent if )( ba and 

)( ab , which is denoted by “ ba || ”. 

For example, assume that the cameras in the scenario presented in Fig. 1 are in standby and 

that the vehicle begins to move from left to right. In this context, the cameras wakeup when 

they detect a motion activity, and immediately after, each camera sends a broadcast message to 

its neighbors. According to condition 1 of the HBR, the internal event wakeup at each camera 

causally precedes the event sends (wakeup  sends). On the other hand, if a chain of events 

exists between wakeups originated from different sources, such that wakeup  sends  

wakeup, then according to conditions 2 and 3, these events are also causally related.  

2.3 Happened-before Relation for Intervals 

An interval is a set of events that originate from the same source and occur during a period of 

time. In this paper we also refer to an interval as a local-stream. Lamport establishes in [15] 

the following:  let A and B be two intervals, where interval A happens before interval B if all 

the elements that compose interval A causally precede all the elements of interval B. We 

formally define the HBR for intervals as follows: 
 

Definition 2: The causal relation “→” is established at a set level by satisfying the 

following conditions: 

1. BA if ba  for all pair ba, ,),(, BAbaba   and 

2. BA if )(| BCCAC  . 

Based on Definition 2, it is said that A co-occurs with B if either some portion of A or the entire 

interval A happens at the “same time” as interval B. 

2.4 The Logical Mapping Model 

The logical mapping model introduced in [13] is useful to represent “cause and effect” 

pairwise interactions between processes. Such model expresses temporal relations between 

local-streams in terms of the happened-before relation for intervals. The logical mapping 

translation can decompose every pair (X, Y) of intervals of a temporal relation into four 

subintervals: A , C , D  and B , as shown in Table 1. 

The logical mapping model identifies five logical mappings which are: precedes, 

simultaneous, ends, starts and overlaps. These five logical mappings are sufficient to 

represent all possible temporal relations between continuous media (interval-interval relations 
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[16]), discrete media (point-to-point relations [17]), and discrete-continuous media relations 

[17]. 

Table 1. Logical mapping model 

Logical mappings Scenario example 

precedes: BA  

 

simultaneous: DC | | |  

 

ends: )| | |( DCA  

 

starts: BDC )| | |(  

 

overlaps: BDCA  )| | |(  

 

 

3. In-network Data Alignment Approach 

One main task of the data fusion process is the data alignment, which consists in detecting 

temporal references and adjusting the collected data according to the detected references. With 

such adjustments, the data  can be fused at a later stage. To achieve this, it is necessary to 

detect patterns, such as concurrency, among the generated streams. As has been shown in the 

works of Chandra and Kshemkalyani [3], [18], [19], a practical way to detect patterns among 

local-streams is by assuming a global time axis and by using the interval-interval relations 

defined by Allen [16]. Unfortunately, establishing a global timeline in a WMSN is difficult 

due to the lack of perfectly synchronized clocks [4]. However, as has been shown by Pomares 

et al. with their logical mapping model [13], the interval-interval relations can be expressed in 

terms of the happened-before relation, allowing the system to prescind from physical clocks. 

As far as data alignment is concerned, we are specifically interested in detecting the 

concurrences among sets of events since the events within such sets need to be fused or 

filtered. 

The logical mapping model [13] is focused on detecting temporal dependencies between a 

pair of intervals. For our problem, this refers only to the base case, which is the detection of 

temporal dependencies between local-streams. In the next sections, we present the data 
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aligment proposal focused on detecting temporal dependencies between event-streamings that 

are composed by events originated from multiple sources.  

3.1 Data Alignment Proposal 

We begin by defining the event-streaming for our purpose as a finite collection ES of disjoint 

subsets iR
iQ  of events, originated from multiple sources, and causally arranged one after 

another without interruption. This collection has the general causal structure: 
 

nn R

n

R

n

RR
QQQQES  


121

121   
where each superindex iR  refers to the set of identifiers of the processes that originated the 

events.  

This arrangement of subsets iR
iQ  allows us to establish a relative timeline where each 

subset iR
iQ  represents a unique time-slot. The fact that the subsets iR

iQ  are disjoint implies 

that each event in an event-streaming belongs to a unique subset iR
iQ , and therefore, it is 

located at a specific time-slot. 

In terms of the data fusion problem, the concurrent events that belong to a same iR
iQ  

represent data originated in the same time-slot by different sources that can be redundant. For 

this reason, such data needs to be fused or filtered in a later processing. 

The identification and construction of the subsets iR
iQ that compose an event-streaming is 

collaboratively performed according to the causal view of the involved processes as is 

explained in the following section. 

3.2 Data Alignment Process Description 

The data alignment process is described through four stages. The first stage, called A.1 

describes how two local-streams are initially aligned to compose a first event-streaming. The 

next three stages, called B.1, B.2, and B.3, describe how an event-streaming and a local-stream  

are aligned to establish a relative timeline. To illustrate in a broad manner how these stages 

work, we present the following example.  

In the scenario of Fig. 1, assume that the cameras wakeup from left to right when they detect 

the vehicle motion activity, and that immediately after, each camera begins to broadcast video 

frames (messages) to its neighbors. In this context, the initial stage A.1 is responsible for 

aligning the video sequences (local-streams) of the first two cameras by generating a first 

event-streaming. Once the first stage has finished, we continue through stages B.1, B.2, and 

B.3, to align the resultant event-streaming with the subsequent local-stream of the next camera 

to the right as the vehicle moves. A new event-streaming results from B.x stages which at the 

time will be aligned with the next local-stream and so on. The B.x stages will be repeated until 

no more local-streams need to be aligned. 

A detail description of the alignment process is presented as follows. 
 

A.1 Initial stage: alignment of two local-streams.  

Initially, we have two local-streams, cX  and dY . cX  is a local-stream originated by a 

process cp , while dY  is a local-stream originated by a process dp ; and cX  precedes dY  or 

cX  co-occurs with dY  . Applying the native logical mapping, we generate the first 

event-streaming ES as follows. 
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Taking as reference the scenario presented in Fig. 2, we construct a first subset }{
1

cQ  with 

the first non-concurrent events in cX . To determine those non-concurrent events, we need to 

identify all the events Xx   that precede the beginning of Y (see Fig. 2). 
 

 

Fig. 2. Aligning the first subset of the first event-streaming. 

We then proceed to construct a second subset },{
2

dcQ  with the concurrent events between 

cX  and dY . The concurrent segments of both local-streams will be bounded by the beginning 

of dY  and the end of either of the two local-streams (see Fig. 3). 

 

 
Fig. 3. Aligning the second subset of the first event-streaming. 

 

The last subset 3

3
R

Q  is constructed depending on which local-stream finishes first. If cX  

finishes first, the last subset will contain the remaining events of dY . Otherwise, the last subset 

will contain the remaining events of cX . These two cases are illustrated in Fig. 4. 

 

  
(a) (b) 

Fig. 4. Aligning the last subset of the first event-streaming: 

(a) X finishes first, (b) Y finishes first. 
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Therefore, the first event-streaming has the general causal structure: 
 

3

3
},{

2
}{

1
Rdcc QQQES   

where }{3 cR   or }{3 dR   depending on which local-stream finishes first. 

 

From now on, the event-streaming is labeled as X , where   is the set of identifiers of the 

processes that generated the events, and the local-stream is labeled as kY , where k is the 

identifier of the local process. 

 

B.1 Aligning the first subsets of events without concurrences between an 

event-streaming and a local-stream.  
In the first step, we form the first subsets of the new event-streaming with the subsets 

XQ aR

a  that precede the local-stream kY and have non-concurrent events. These subsets are 

relabeled and directly integrated to the new event-streaming to form the first subsets of events 

ESQ aT

a  . Taking the example presented in the scenario of Fig. 5, the subsets 1

1

R
Q  and 

2

2

R
Q are the events that are directly integrated to the new event-streaming as the first subsets 

ESQ aT

a  .  

If a subset XQ aR

a 
 
has events that are concurrent with a part of the local-stream kY , this 

subset is segmented to form two new subsets for the new event-streaming ES. The first of the 

two new subsets will contain the part of aR

aQ  whose events have no concurrence. For the 

scenario depicted in Fig. 5, the new subset aT

aQ , created with the non-concurrent events of 

aR

aQ , corresponds to the subset 3

3

T
Q .  

 

 

Fig. 5. Aligning the first subsets of events of an event-streaming. 

B.2 Aligning the subsets of events with concurrences between an event-streaming and 

a local-stream. If during stage B.1, a subset aR

aQ
 
whose events are concurrent with a part of 

the local-stream kY was detected, the part of aR

aQ  with concurrent events forms a new subset 
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bT

bQ  along with the concurrent events of kY . For the example depicted in Fig. 5, the new 

subset bT

bQ , created with the concurrent events of aR

aQ , corresponds to the subset 4

4

R
Q .  

Once the beginning of the concurrent parts of both streams is detected, all the subsequent 

subsets XQ bR

b   are aligned with respect to the events of kY  until one of the two streams 

finishes. This means that for each subset bR

bQ in the concurrent part of X , a new subset cT

cQ  

will be constructed for the new event-streaming. Taking as an example the scenario of Fig. 6, 

the new subsets cT

cQ  correspond to the subsets 65

65 ,
TT

QQ and 7

7

T
Q . 

 

 

Fig. 6: Aligning subsets of events with concurrences. 

 

The final subsets of the resultant event-streaming will be constructed depending on which 

stream finishes first. If local-stream kY  finishes first, the last concurrent subset ESQ bR

b   

can contain some events that are concurrent with kY  and other events that have no 

concurrence (see Fig. 7). If this is the case, such subset bR

bQ needs to be segmented to 

construct two new subsets for the new event-streaming. The first of the two new subsets will 

contain the concurrent part of bR

bQ  and the concurrent events of kY . For the scenario depicted 

in Fig. 7, the new subset cT

cQ , created with the concurrent events of the last subset 

XQ bR

b  and kY , corresponds to the subset 7

7

T
Q .  

 

B.3 Aligning the last subsets of events without concurrences. This stage is explained 

through two cases. 

 

Case A. kY  finishes before X . If at the end of stage B.2, the last subset bR

bQ  was 

segmented, the second created subset for the event-streaming, denoted as dT

dQ , will contain 

the remaining non-concurrent events of bR

bQ .  In the scenario of Fig. 7, such subset dT

dQ  

corresponds to the subset 8

8

T
Q . 
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The fact that the local-stream kY  finishes first implies that the concurrent parts of both 

streams finish along with kY . Therefore, the remaining subsets XQ cR

c 
 
will become 

ESQ dT

d  , which are the last subsets. In the scenario of Fig. 7, the last subsets dT

dQ  are the 

subsets 109

109 ,
TT

QQ and 11

11

T
Q . 

 

 

Fig. 7: Aligning the last subsets of events without concurrences  

when kY
 finishes before X

. 

Case B. X  finishes before kY . The fact that the event-streaming X  finishes first 

means that the concurrent parts of both streams finish along with the event-streaming X . 

After the last subset ESQ cT

c 
 
was constructed with the concurrent events of  X  and kY , 

only one more subset dT

dQ  is constructed.  Such subset dT

dQ  will contain the remaining events 

of the local-stream kY . In the scenario of Fig. 8, the last subset dT

dQ  corresponds to the subset 

8

8

T
Q . 

 

Fig. 8.: Aligning the last subsets of events without concurrences  

when X  finishes before kY . 
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4. Conclusion and Future Work 

A temporal data alignment approach suitable for data fusion in a WMSN was presented. The 

approach was designed considering the event-streaming paradigm. One original aspect of our 

approach is that the data alignment is performed without using global references by translating 

temporal constraints to causal dependencies of the media involved. To achieve this, the 

event-streaming was defined and constructed as a finite collection ES of disjoint subsets, 

which are causally ordered and arranged one after another without interruption. As a direct 

consequence, each ordered set of events in an ES determines a specific and unique time-slot.  

Extensions of this work will regard the integration of information from the spatial domain in 

conjunction with the temporal domain. For this, we propose to extend the alignment approach 

by using the principle of the Fuzzy Causal Ordering introduced in [20] which considers the 

incorporation of more than one heterogeneous domain.  The integration of temporal and 

spatial information within a same approach will also be useful to perform filtration and 

association of data in WMSNs. 
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