
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 116
Copyright ⓒ 2012 KSII

DOI :10.3837/tiis.2012.01.007

Flexible Service Composition Based on
Bundle Communication in OSGi

Ramon Alcarria, Tomas Robles, Augusto Morales and Sergio Gonzalez-Miranda

Telematics Department, Technical University of Madrid
Madrid, 28040 - Spain

[e-mail: {ralcarria,trobles,amorales,miranda}@dit.upm.es]
*Corresponding author: Ramon Alcarria

Received September 1, 2011; revised January 16, 2012; accepted January 18, 2012;

published January 31, 2012

Abstract

Service provision and consumption platforms are more and more used to enable
communication between sensors, actuators and intelligent devices, since they provide
mechanisms that make possible the combination of components to create composed services.
However, these kinds of platforms have limitations to adapt themselves to new and unknown
devices. In this work we analyze the challenge of component or bundle communication by
using the Open Services Gateway Initiative (OSGi) technology and we propose three
mechanisms with the aim of contributing to flexible component communication: Common
Service, Specific Service and WSIF Web Service Invocation. We provide these solutions with
some architectural models and validate them through different example services. Finally we
compare them regarding performance, flexibility and application complexity.

Keywords: Ubiquitous computing, M2M, OSGi, self-adaptive systems

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 117

1. Introduction

Machine to machine communications have evolved in recent years to become an
indispensable part of our lives and of our digital world. Recent related works combine
characteristics of SOAs and Component-based Software Architectures (CBSE) to facilitate
communication between sensors, actuators and other elements [1]. These studies contribute to
the provision and consumption of composed services, which integrate device oriented
information with valuable information for users [2][3].

In M2M environments, devices appear and disappear due to problems of range, battery or
maintenance issues. Also, new devices are discovered and must be integrated into M2M
solutions. This paper analyzes how OSGi technology can be used to enable flexible
composition of services that try to access to unknown bundles. The integration of these
services into M2M solutions allows M2M applications not only to access their functionality
but also to obtain valuable information from them. In the next section we define our service
composition model and the benefits of using the OSGi technology to implement it. Section 3
describes related work in Flexible Service Communication and Section 4 defines three
mechanisms and reference architectures, which manage the problem of communication with
unknown OSGi bundles. Section 5 shows our qualitative and performance analysis and
Section 6 the conclusion of our work.

2. Service Composition Model
We define the logical structure of a service by different levels: service level, component level
and implementation level. A composed service is a set of simple, interrelated elements, called
atomic services. The process of the creation of new and complex composed services by service
interconnection is called Service Orchestration. Atomic services are represented in the
Abstract level as abstract services, which consist of a definition of service’s functionality, and
in the Implementation level as concrete services, which consist of a concrete implementation
of the service logic behavior, provided by external elements, such as devices or web servers. In
execution time, when a suitable functionality appears in the environment (e.g. new devices are
found) the abstract service is matched with the concrete service that implements this
functionality. This process is called Service Resolution.

To facilitate the understanding of these concepts we present the example of a service, called
Sport Tracker, which aims to access the location information of a user and to represent it on a
map along with information about his heartbeat. This service consists of three components
which contain the definition of three services: A Map provider, a Location service and a Pulse
service. These abstract services provide an interface that must be implemented so that the
composed service can be executed. For example, the Location service needs to be resolved in a
GPS device or a GPS capability offered by a mobile phone in order to get real information
about the user's location. Fig. 1 shows our service composition model, adapted to this simple
example service.

118 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

Abstract level

Service level

Implementation
level

Sport Tracker

Location Map Pulse

Mobile
GPS

Car
GPS

Google
Maps

Yahoo
Maps

Bluetooth
sensor

Service Orchestration

Service Resolution

Fig. 1. Service Composition Model

2.1 Resolving Composition Challenges Using OSGi
The OSGi framework is a modular service platform for the Java programming language that
implements a complete and dynamic component model. Applications or components (coming
in the form of bundles for deployment) can be remotely installed, started, stopped, updated and
uninstalled without requiring a reboot. Fig. 2 shows the communication between a consumer
and a provider bundle. Each bundle has a manifest file (Manifest.MF), which contains
instructions on how the OSGi platform manages the bundle. A service is a Java interface,
which contains a number of methods, implemented by other classes contained in the bundle.
Services are exported and imported through the OSGi context, which acts as a repository for
publishing and searching services.

S

S

JJ

J

Manifest.MF

Service

Java Classes
J

Manifest.MF

Service
Exports

Imports

Consumer
Bundle

Provider
Bundle

Exports

Fig. 2. Bundle Communication in OSGi

Fig. 3 shows how the OSGi model can be applied to access Location information, based on
the Sport Tracker service. According to the figure, the Sport Tracker service is defined in an
SDL (Service Description Language) document that is designed by a service developer in, for
example, a WS-BPEL orchestration language, which specifies the OSGi services to be
accessed, such as in the work of Diaz Redondo et al. [4]. A similar behavior exists between the
abstract level of the service composition model and the concept of OSGi service, since OSGi
services (which consist of interface definitions) can be used as basic functional units of a
composite service. In addition, we also observe an equivalency between the implementation
level of the composition model and the concept of OSGi service implementation, since there
are two bundles that publish the same service (Location Service), but they implement it in
different ways, one that accesses the user's mobile GPS and the other that connects to the car's

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 119

GPS device. The orchestration and resolution processes manage the interactions between the
composite service and OSGi services and between OSGi services and the bundle that
implement them respectively. These processes are modeled in OSGi through the reference
architectures defined in Section 4.

S
J

Manifest.MF

Bundle
Mobile GPS

Exports

<ServiceName>
LocationService

</ServiceName>
<Method>

getLocation
</Method>

<ServiceName>
MapService

…….. S
J

Manifest.MF

Bundle
Car GPS

Exports

Location
Service

Location
Service

SDL Document

Fig. 3. Accessing location information using OSGi

2.2 Communication with Unknown Bundles
In OSGi, given the impossibility for the bundle manager to be created with knowledge of the
provider bundles that are going to exist in the platform, it will be difficult for this module to
know the name of the service to consume and the signature of the methods to execute until it
has received the SDL document with the information regarding the services to invoke.
Therefore, there is a situation where the communication environment will not know a priori
the services to be accessed. We have called this problem communication with unknown
bundles and its solution enables a flexible service composition.

3. Related Work in Flexible Service Composition
This section analyses how research projects and scientific contributions resolve the problem of
communication with unknown services or components. Contributions to this problem can be
classified into two groups: Those who opt for traditional communication systems via
messaging (Message Oriented Middleware, MOM) and those who use the advantages of
dynamic binding in Web service composition.

Within this first group is the project SOA4All, contributing to achieve a federation of ESBs
for large SOA deployments [5]. Thus, PETALS ESB becomes a Distributed Service Bus, in
which components, not known a priori, are interconnected by using the Java Message Service
(JMS). S-Cube project addresses this problem, but within the field of self-adaptation of
service-based systems. This adaptation aims to extend the architecture with new components
and addresses the problem of interface adaptation [6], which often appears in environments
where components to connect are not known a priori.

120 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

The PLASTIC project has developed a platform for rapid and easy development, deployment
and execution of adaptable services over Beyond 3rd Generation (B3G) networks. In the frame
of this project, a two-layer approach is proposed [2], in which the component layer manages
the life cycle of the software components, whereas the service layer manages the description
of services and their composition. Our defined model includes an additional level, the
implementation level, dealing with real access to resources through the resolution process.
Related to component communication, the PLASTIC project is aware that Web Services are
not the only way to implement SOA. Message-Oriented Middleware systems, such as the IBM
MQ series or CORBA are proposed as an alternative for component communication although
they do not propose any particular definition language or model for message interchange. In
other work, Autili et al. [3] propose a technique for Service Over The Air provision, for
binding new components to the platform. This technique requires Inter Process
Communications between midlets, such as file writing and reading, socket communication or
database insert and retrieval.

The MOSAICO project [7] also supports an architecture for evolving component-based
systems, in which new components can be plugged in at run-time. For doing that an extension
layer is provided to make the binding with new run-time components through extension points
(joint points), defined by an aspect oriented programming model.

The problem of communication with unknown bundles, whose availability may also change
dynamically, can be addresses from the perspective of Web service composition, which
facilitates decoupling between orchestration logic and WS definition, using technologies such
as WS-BPEL and WSDL. The ASTRO project [8] develops a platform that supports
composition and execution of WS, invoked using ActiveBPEL, an execution engine which
performs service invocations with SOAP over HTTP. The problem of these approaches is
based on the premise that all services used in the compositions are WS, where services may be
not related to the web world or are offered by devices which, due to their limited processing
resources cannot implement SOAP/WSDL. However, 6LowPAN and the emerging
Constrained Application Protocol (COAP) are considered to make real progress for providing
the WS paradigm to limited devices. Access to non-web services may require installing
additional software components that act as libraries or access drivers to devices. Existing
solutions for invoking software components from a BPEL-style orchestration logic are:
- Directly embedding Java code in a BPEL process, using the Java BPEL exec extension

(bpelx:exec). Used for very simple Java tasks and therefore not valid for our approach.
- Wrapping the code as a SOAP service (e.g. using the Java API for XML Web Services,

JAX-WS). Although this solution enables code reusability, SOAP overhead produces very
low performance.

- Using Web Service Invocation Framework (WSIF), which uses the native J2EE RMI
protocol for communication with Enterprise Java Beans (EJBs). This mechanism provides
acceptable performance values and will be considered for the analysis of Section 4 and the
comparison with OSGi solutions of Section 5.

Most of the related work that contribute to flexible component communication try to solve the
communication with unknown components through techniques based on messaging (JMS in
SOA4All, MOM systems in PLASTIC or RMI in some WS-based projects). To solve the
problem of communication between unknown bundles in M2M environments we propose two
OSGi solutions based on direct bundle communication that offer significantly better
performance than using messaging-based techniques.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 121

4. Resolving Bundle Communication Issues
The problem related to communication between bundles is produced at runtime, when the
platform, through a bundle manager, wants to access a provider bundle (may also be consumer
and the problem would be equivalent) whose OSGi service (interface name and signature of
the methods it contains) is described in an SDL document, like the one that defines how to
access the location information in Fig. 3. Given the impossibility for the bundle manager to be
created with knowledge of the provider bundles that are going to exist in the platform, two
main problems appear:
- Problem #1: In the service provider’s side, the provider bundle must inform the bundle

manager of the specific service the provider deploys (method definitions and service
names).

- Problem #2: In the service consumer’s side, according to OSGi, the bundle manager must
import the package containing the service's interface in its manifest file. (importPackage:
ProviderBundle1). In addition, consumer classes must import the service interface
reference and use it (ProviderService ps = bundleContext.getService();).

To overcome these problems we define three reference architectures which support two
solutions that can be applied in the OSGi platform and another solution brought from the Web
Service world: Specific Service, Common Service and WSIF Invocation. These solutions are
based in other related studies. However, these studies do not take into account the problem of
communication with unknown bundles neither different alternatives are analyzed nor
compared in terms of performance.

4.1 Specific Service
This solution solves the problem of communication between the bundle manager and a
specific unknown service. The bundle manager uses the Java reflection library to modify his
own behavior at runtime. The reflection mechanism in OSGi is often used when it is needed to
invoke services described in SDL documents, as in the work of Anke et al. [9], which exposes
OSGi services as Web services. Reflection in OSGi is also used to make performance
comparisons [10] and reconfigurable middleware [11] (e.g. through the iPOJO solution [12]).
The architecture of the Specific Service (SS) solution is presented in Fig. 4.

The Bundle Manager performs the service orchestration process, as explained in the service
composition model in Fig. 1. We assume that the bundle manager does not know a priori the
orchestration logic, the services to run or the signature of the methods that compose them, but
this information is available on the SDL document that is accessible by the Service Reader, so
that this solves Problem #1. The Service Controller performs service resolution (i.e. the
selection of the best bundle implementation of a given OSGi service) by invoking OSGi
BundleContext method getServiceReferences(String serviceName, String filter), specifying a
syntactic filter for bundle selection. The SS Architecture uses the reflection mechanism from
the java.lang.reflect package for solving Problem #2, as there is no need to specify references
to specific services in the consumer class, but dealing with a Java Object and invoking the
method methodName, as follows:

Object providerService = context.getServiceReference(“serviceName”);
Class serviceClass = providerService.getClass();
Method serviceMethod = serviceClass.getMethod(“methodName”);
Object result = serviceMethod.invoke(providerService);

122 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

S J

Manifest.MF

Service
Definition

S J

Manifest.MF

Provider
Bundle 2

Service
Controller

Service
Reader

Bundle Manager

Specific
Service 1

Specific
Service 2

Provider
Bundle 1

SDL Document

Service “ServiceName1”
method “methodName1”

params “methodParams[]”
method “methodName2”…

Service “ServiceName2”
method “methodName1”

params “methodParams[]”
method “methodName2”…

Fig. 4. Specific Service Architecture

4.2 Common Service
All the provider bundles publish the same OSGi service, i.e. the same interface. This standard
solution has been utilized as a basic model in related work [4][13][14], where provider bundles
are developed specifically for the platform. This solution is often combined with the inversion
of control pattern, through which the Bundle Manager finds and starts the Provider Bundles,
which consumes the common service. Fig. 5 shows the application of the Common Service
Solution to the defined SS Architecture.

S J

Manifest.MF

Service
Definition

S J

Manifest.MF

Provider
Bundle 2

Service
Controller

Service
Reader

Bundle Manager

Provider
Bundle 1

SDL Document

Service CommonService
method invoke

param String methodName;
param Object args[];

Common
Service

Common
Service

Fig. 5. Common Service Solution

The common interface contains the method invoke (String methodName, Object args []) that
returns an Object, being methodName the method name to invoke and args[] an array of
arguments that supports the method methodName. This solution eliminates Problems #1 and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 123

#2 directly, since service definition is shared and the bundle manager has been designed for
using the common service.

However, a theoretical analysis shows that the Common Service mechanism is not very
flexible, since provider bundles have to publish a common interface, which imposes
restrictions to the developers of these bundles. We can solve this problem by using dynamic
proxy generation mechanism to translate invocations from the Common Service to the
provider bundle’s Specific Service. We define a Common Service with Proxy Generation
(CSwPG) architecture (shown in Fig. 6), which supports the mechanism of dynamic proxy
generation, used in R-OSGi [15] and iPOJO [12]. R-OSGi uses byte code manipulation
through the ASM library to create a complete proxy implementation of a remote bundle at
runtime, and packs it into a JAR file together with the specific service interface. iPOJO also
uses bytecode manipulation for handling service dependencies. The CSwPG solution produces
more overhead, due to dynamic code generation, as discussed in the Validation section.

S J

Manifest.MF

Service
Definition

S J

Manifest.MF

Provider
Bundle 2

Specific
Service 1

Specific
Service 2

Service
Controller

Service
Reader

Bundle Manager

S J

Manifest.MF

Proxy 1

S J

Manifest.MF

Proxy 2

Common
Service

Common
Service

Provider
Bundle 1

S

S
J

J

SDL Document

Fig. 6. Common Service with Proxy Generation Architecture

4.3 WSIF Invocation
This proposed solution uses Apache WSIF to execute software components in a flexible way
without having to resort to a remote communication (i.e. through SOAP), in which the
performance overhead is several orders of magnitude larger than invoking native Java classes
or EJBs. As described in Section 3, the Apache WSIF API is the option that offers highest
performance in binding between Java classes and WSDL interfaces. Related work shows this
mechanism [16], which uses the Java RMI library, and other Web Service Invocation
Frameworks, such as Apache Axis and CXF, which support SOAP and JAX-WS invocations
respectively [17]. We include a solution based on the WSIF Framework because it offers a
good performance to be compared with the previous OSGi solutions.

The proposed architecture in Fig. 7 supports the process by which a Java class or an EJB
can be used as a WS. First of all we must define the signature for each operation and the
corresponding input and output messages (1). Then we must define WSIF bindings (2):
binding type (specifying the target of the invocation, a Java class, EJB, JCA, etc), type
mapping (for all complex types, simple types such as ‘int’ are mapped automatically) and
operation mapping (where we must specify for each WSDL operation the corresponding

124 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

operation in the target resource). The <partnerLinkType> declaration in the Service
Definition (3) will redirect the service invocation (4) through the WSIF Framework and then
through the Provider Component (5).

J

Service
Definition

(BPEL)

Specific
Service

Provider
Component

BPEL
Engine WSDL WSIF

Framework

Signature
generation

Component
definition

WSIF
Binding

Definition

J
J

WSDL
generation 12

4

3

5

Fig. 7. WSIF Architecture

This solution is not affected by Problems #1 and #2, as the invocation is decoupled from
service definition through the WSDL document. WS-BPEL or any other language that
supports WSDL orchestration could be used to define the composite service. However,
parameter passing is not direct but by Java RMI, which affects performance.

5. Evaluation
We have implemented the previous three solutions with the provided architecture and we have
developed two services for these solutions. We analyze the architectures, show some
performance results for both services and, finally, we compare the results with expected
values.

5.1 Prototype Applications
We introduce two composed services, which follow the service composition model defined in
Section 2. These services offer a complete and final functionality, as they are orchestrated by
OSGi services in the Abstract level, which are implemented by bundles located in a repository
(Implementation level).

Service # 1: Sport Tracker. This service, described in Section 2, consists of 4 OSGi services,
published by 4 provider bundles; two of them publish a PulseService service, another one a
LocationService and the last one a MapService. In the Implementation level, to obtain the
location information, the Location Service is resolved to a provider bundle which manages the
internal GPS of a Nokia N97, and the PulseService can be resolved to either a B600 FRWD
heart rate monitor (FRWD) or a BT microX Medical RGB (RGB) pulse oximeter, depending
on information for the resolution process stored in the SDL document of the Sport Tracker
service, which we don’t take into consideration for benchmark analysis. Only for carrying out
comparative tests between solutions we have simulated the behavior of these devices, in order
to exclude Bluetooth connection errors and data access delays from the benchmark analysis.

Service # 2: Fire Presence. This more complex service consists of 3 OSGi services
(PresenceService, Camera and MMSService) and 12 provider bundles, which control 10
presence sensors, a presence camera and a MMS (Multimedia Messaging Service) server. The
presence sensors are responsible for launching an event every time they detect any kind of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 125

presence or movement in the environment and the camera is responsible for, once an event has
been launched by any presence detector, taking a picture to see the physical object that
triggered the sensor. The MMS bundle has the functionality to transmit the photo by the
camera using MMS. Unlike the previous case, access to device functionality has been
simulated to carry out all tests.

5.2 Qualitative Comparison
We perform a qualitative analysis of selected solutions taking into consideration the solution
implemented and the architecture characteristics. A summary of the evaluation comparison
can be seen in Table 1. SS means Specific Service, CSwPG means Common Service with
Proxy Generation and WI means WSIF Invocation.

In terms of architecture complexity, the SS architecture requires fewer bundles to work
properly, because it does not need a proxy for each provider bundle, required by the CSwPG
architecture. The CSwPG architecture is the most complex one, because it requires an extra
bundle for each provider bundle. This architecture obtains the highest value for the SRP
(Service Realization Pattern) metric in [18], which measures the number of bundles that
exposes services by indirect exposure (i.e. requires additional bundles or proxies to mediate
between a service and an IT system). The WI solution also requires extra bundles to generate
the WSDL interface.

Regarding the level of difficulty for architecture developers, we analyze the code
complexity of the solutions. The code of the SS solution must support reflection and WSIF
architecture requires knowledge of the Apache framework. The dynamic generation of code
that supports CSwPG is, in our opinion, the most complex mechanism.

With respect to the flexibility, the integration of new bundles is immediate with the three
solutions if we properly specify the interfaces of provider bundles. Service selection in the
three cases is dynamic. Therefore, the solutions are very flexible and agile according to the
DSSS (Dynamic vs. Static Service Selection) metric [18], which evaluates the number of
services that are selected dynamically over the total number of services that are selected
dynamically or statically. We believe the WI solution is the most flexible option, as it converts
service specification to a standard format (WSDL).

5.3 Performance Evaluation
We carried out a performance evaluation, based on the two services above. The tests have been

Table 1. Qualitative comparison summary
Attributes Solutions

SS CSwPG WI
Architecture
complexity

(# of bundles)

One bundle for each
provider bundle

Two bundles for each
provider bundle

One bundle for each WS
and bundles for WSDL

generation
Difficulty of
architecture
development

Simple programming
structures and

reflection

Dynamic code
generation

Knowledge of Apache
Framework is required

Flexibility
(adaptation to

unknown bundles)

Immediate bundle
integration

Immediate bundle
integration

Immediate bundle
integration and WSDL

specification

126 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

performed by codifying the following criteria in the SDL document that feeds the proposed
architectures:
1. Execution time of CSwPG, SS and WI mechanisms for the Sport Tracker service, without

taking into account the proposed architecture, service validation, error and inconsistency
handling and logging features.

2. Measurement of the execution time for 1, 10, 100 and 1000 concurrent Sport Tracker
(service # 1) and Fire Presence (service # 2) services. The execution time is the time it
takes to run a service iteration after registering the required bundles for the service (in both
OSGi and WSIF cases).

The result values offered by these web services have been simulated, as in the OSGi solutions,
to avoid wrong measurements due to transmission delays or information processing errors.
The invocation process is split into two subprocesses: service instantiation and data
interchange.

In our tests we have observed a fairly linear behavior of the solutions, so that we only show,
in Table 2, the performance results of the instantiation of one Sport Tracker service and the
interchange of 1000 data.

As Table 2 shows, service instantiation for SS is much lower than CSwPG’s, since the

latter has to dynamically generate proxies and register them in the OSGi platform, which take
about 300 ms for each proxy. In the data interchange process the performance is similar, with
the particularity that in the CSwPG solution, dealing with a proxy requires two service
invocations for each invocation in SS, so the average time per invocation is about 40 ms, lower
than in the SS case because CSwPG does not use reflection. Regarding WI solution, the
instantiation time is also high (having to interpret the WSDL service interface) and the
interchange time is also very high (using object serialization in RMI rather than reflective or
direct methods). Other reviewed performance analysis [10] confirms these values. The
obtained results by performing the second test in these solutions are shown in Table 3.

These measurements are made on a Dell M1530 with Core 2 Duo CPU T8100 @2.10 GHz

and 3.50 GB of RAM. We have used Eclipse Helios Release 1 environment with Sun

 Table 3. Execution time for SS, CSwPG and WI architectures
of concurrent

services
Execution time (ms)

Service #1 Service #2
SS CSwPG WI SS CSwPG WI

1 service 8 13 69 38 63 297
10 services 71 109 613 322 511 2559

100 services 641 965 5596 2540 3908 22870
1000 services 5024 7532 51432 17381 27380 206646

 Table 2. Performance results for SS, CSwPG and WI mechanisms in ms

 Instantiation Interchange Total
SS 92 51 143

CSwPG 950 78 1028
WI 390 211 601

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 127

JavaSE-1.6 and OSGi Equinox 3.6.1. We have selected the average value of three
measurements for each case. The memory consumption in all cases has not exceeded 150MB
(≈ 4%).

To interpret the results, Fig. 8 and Fig. 9 show the invocation time per service iteration for
the Sport Tracker and Fire Presence services. WI solution has a very slow execution time
compared to the other two solutions, among which SS is the fastest. Due to JMV compilation
time optimization mechanisms (e.g. method inlining), the average invocation time is
decreasing in all architectures and more noticeable in Service # 2, which is the most complex
(more interactions between bundles), which reaches 50% in 1000 services.

After evaluating the results of both tests we consider that the wrapping mechanism of Web
services as software components is not worth for situations of intensive use of local
components or services. Also, the CSwPG solution has poor performance for situations with
not too many invocations, due to the instantiation time, whereas the invocation time is ≈ 35%
slower. We conclude that this solution is valid for flexible local communication, but more
appropriated for distributed communication, for which dynamic proxy generation was
designed.

0

10

20

30

40

50

60

70

80

1 10 100 1000

WI

CSwPG

SS

Invocation time (ms)

Services

Fig. 8. Performance results for Service # 1

128 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

0

50

100

150

200

250

300

350

1 10 100 1000

WI

CSwPG

SS

Invocation time (ms)

Services

Fig. 9. Performance results for Service # 2

6. Conclusion
It is envisioned that some systems will shift from current machine-to-human communications
to the machine-to-machine paradigm with the rapid penetration of embedded devices [19].
This work has presented the OSGi technology as a candidate to influence future M2M
solutions by enabling communication with bundles that did not previously exist in the
platform. The use of OSGi is not restricted only to the integration of home appliances but has
the potential to enable communication with any device to be networked and controlled by
other devices. The OSGi technology is suitable for our composition model, based on
composed services, defined in SDL documents, abstract services, which consist of a definition
of service’s functionality and concrete services, which represent the concrete implementation
of the service logic behavior. After reviewing related work in flexible service composition we
present the SS and CSwPG OSGi solutions and a solution from the world of Web Services
(WSIF invocation) to deal with unknown components. The proposed architectures have been
developed and evaluated theoretically and by a performance analysis.

We conclude that, although the solution to convert bundles into WS (by generating their
WSDL document) and orchestrate them with BPEL-like languages provides more flexibility,
the performance of this solution is far below compared to reflective mechanisms or direct
access to local components. Although the performance of the CSwPG solution is close to the
SS’s (around 35% worse), the instantiation time and complexity of the CSwPG architecture
makes us consider using it only in environments where it is needed (remote invocation and
distributed bundles), which leaves the SS solution as the best default option and specifically
for systems with limited resources or where performance becomes a key factor.

References
[1] Francisco Curbera, Rania Khalaz, Mirmal Mukhi, Stefan Tai and Sanjiva Weerawarana, “The next

step in web services,” Communications of the ACM, vol. 46, no. 10, pp. 29-34, Oct. 2003. Article
(CrossRef Link)

http://dx.doi.org/10.1145/944217.944234�
http://dx.doi.org/10.1145/944217.944234�

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 129

[2] Marco Autili, Vittorio Cortellessa, Antinisca Di Marco and Paola Inverardi, “A conceptual model
for adaptable context-aware services,” in Proc. of Web Services Modeling and Testing, pp. 15-33,
Jun. 2006.

[3] Marco Autili, Paolo Benedetto and Paola Inverardi, “Context-aware adaptive services: the
PLASTIC approach,” in Proc. of 12th Int. Conf. on Fundamental Approaches to Software
Engineering, pp. 124-139, Mar. 2009. Article (CrossRef Link)

[4] Rebeca P. Diaz Redondo, Ana Fernandez Vilas, Manuel Ramon Cabrer, Jose Juan Pazos Arias and
Marta Rey Lopez, “Enhancing residential gateways: OSGi service composition,” IEEE
Transactions on Consumer Electronics, vol. 53, no. 1, pp. 87-95, Feb. 2007. Article (CrossRef
Link)

[5] Françoise Baude, Imen Filali, Fabrice Huet, Virginie Legrand, Elto Mathias, Philipe Merle,
Cristian Ruz, Reto Krummenacher, Elena Simperl, Christophe Hammerling, and Jean-Pierre Lorre,
“ESB federation for large-scale SOA,” ACM Symposium on Applied Computing, pp. 2459-2466,
Mar. 2010. Article (CrossRef Link)

[6] Marlon Dumas, Murray Spork and Kenneth Wang, “Adapt or perish: Algebra and visual notation
for service interface adaptation,” in Proc. of the Int. Conf. on Business Process Management, pp.
65-80, Sep. 2006. Article (CrossRef Link)

[7] Henry Muccini, Andrea Polini, Fabiano Ricci and Antonia Bertolino, “Monitoring architectural
properties in dynamic component-based systems,” in Proc. of the 10th Int. Symposium on
Component-based Software Engineering, pp. 124-139, Jul. 2007. Article (CrossRef Link)

[8] Michele Trainotti, Marco Pistore, Gaetano Calabrese, Gabriele Zacco, Gigi Lucchese, Fabio
Barbon, Piergiorgio Bertoli and Paolo Traverso, “ASTRO: Supporting composition and Execution
of web services,” in Proc. of the Int. Conf. on Automated and Planning Scheduling, pp. 495-501,
Jun. 2005. Article (CrossRef Link)

[9] Juergen Anke and Christian Sell, “Seamless integration of distributed OSGi bundles into enterprise
processes using BPEL,” in Proc. of the Conference on Communication in Distributed Systems, pp.
1-6, Mar. 2007.

[10] Kiev Gama, Walter Rudametkin and Didier Donsez, “Using fail-stop proxies for enhancing
services isolation in the OSGi service platform,” in Proc. of the 3rd Workshop on Middleware for
Service Oriented Computing, pp. 7-12, Dec. 2008. Article (CrossRef Link)

[11] Paolo Bellavista, Antonio Corrado, Damiano Fontana and Stefano Monti, “iPOJO-based
middleware solutions for self-reconfiguration and self-optimization,” KSII Transactions on
Internet and Information Systems, vol. 5, no. 8, pp. 1368-1387, Aug. 2011. Article (CrossRef Link)

[12] Clement Escoffier, Richard S. Hall and Philippe Lalanda, “iPOJO: an extensible service-oriented
component framework,” in Proc. of the IEEE Int. Conf. on Services Computing, pp. 474-481, Jul.
2007. Article (CrossRef Link)

[13] Pang-Chieh Wang, Cheng-Liang Lin and Ting-Wei Hou, “A service-layer diagnostic approach for
the OSGi framework,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 1973-1981,
Nov. 2009. Article (CrossRef Link)

[14] Wei-Ting Cho, Chin-Feng Lai, Yueh-Min Huang, Wei-Tsong Lee and Sing-Wei Huang, “Home
energy management system for interconnecting and sensing of electric appliances,” KSII
Transactions on Internet and Information Systems, vol. 5, no. 7, pp. 1274-1292, Jul. 2011. Article
(CrossRef Link)

[15] Jiankun Wu, Linpeng Huang, Dejun Wang and Fei Shen, “R-OSGi-based architecture of
distributed smart home system,” IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp.
1166-1172, Aug. 2008. Article (CrossRef Link)

[16] Matjaz Juric et al., “BPEL Cookbook: Best Practices for SOA-Based Integration and Composite
Applications Development,” Packt Publishing, Jul. 2006.

[17] Philipp Leitner, Florian Rosenberg and Schahram Dustdar, “Daios: Efficient dynamic web service
invocation,” IEEE Internet Computing, vol. 13, no. 3, pp. 72-80, May-June 2009. Article
(CrossRef Link)

[18] Mamoun Hirzalla, Jane Cleland-Huang and Ali Arsanjani, “A metrics suite for evaluating
flexibility and complexity in service oriented architectures,” Lecture Notes in Computer Science,

http://dx.doi.org/10.1007/978-3-642-00593-0_9�
http://dx.doi.org/10.1109/TCE.2007.339507�
http://dx.doi.org/10.1109/TCE.2007.339507�
http://dx.doi.org/10.1145/1774088.1774597�
http://dx.doi.org/10.1007/11841760_6�
http://dx.doi.org/10.1007/978-3-540-73551-9_9�
http://dx.doi.org/10.1007/11596141_39�
http://dx.doi.org/10.1145/1462802.1462804�
http://dx.doi.org/10.3837/tiis.2011.08.001�
http://dx.doi.org/10.1109/SCC.2007.74�
http://dx.doi.org/10.1109/TCE.2009.5373758�
http://dx.doi.org/10.3837/tiis.2011.07.004�
http://dx.doi.org/10.3837/tiis.2011.07.004�
http://dx.doi.org/10.1109/TCE.2008.4637602�
http://dx.doi.org/10.1109/MIC.2009.57�
http://dx.doi.org/10.1109/MIC.2009.57�

130 Alcarria et al.: Flexible Service Composition Based on Bundle Communication in OSGi

vol. 5472, pp. 41-52, Dec. 2008. Article (CrossRef Link)
[19] Yan Zhang, Rong Yu, Shengli Xie, Wenqing Yao, Yang Xiao and Guizani, M., “Home M2M

networks: Architectures, standards, and QoS improvement,” IEEE Communications Magazine, vol.
49, no. 4, pp. 44-52, Apr. 2011. Article (CrossRef Link)

Ramon Alcarria received his Master degree in Telecommunication Engineering from
the Technical University of Madrid in 2008. Currently, he continues his studies as a
PhD student and participates in several national and international research projects. His
research interests are Service Architectures, Sensor Networks, Service Composition
and Prosumer Environments. He is a member of IEEE, IEEE Communication Society
and ACM.

Tomas Robles received a M.S and Ph.D. degrees in Telecommunication Engineering
from Technical University of Madrid in 1987 and 1991, respectively. Since 1991 he is
associate professor on Telematics Engineering at the E.T.S.I. Telecommunication of
the Technical University of Madrid. His research interest is focused on Advanced
Applications and services for Broadband networks, both wired and wireless networks.

Augusto Morales received his Bachelor’s degree in 2007 from the University of
Panama, and his Maser’s degree from the Technical University of Madrid in 2010.
Since 2008 he has been working in several areas related Service Architectures, NGN
and Network Security while he pursues his PhD. He holds several IT Certifications
such as CEH, Security+, Linux+ and CCSE.

Sergio Gonzalez-Miranda received his Bachelor’s degree in Informatics from
Aguascalientes Institute of Technology (Mexico) and he is a PhD student for the
Technical University of Madrid. His main research interests include: Telco and Web
2.0 mashups, Fixed-Mobile convergence, NGN services and security.

http://dx.doi.org/10.1007/978-3-642-01247-1_5�
http://dx.doi.org/10.1109/MCOM.2011.5741145�

