DOI QR코드

DOI QR Code

미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice

  • 이종협 (한국에너지기술연구원 온실가스연구단) ;
  • 강성필 (한국에너지기술연구원 온실가스연구단)
  • Lee, Jong-Hyub (Greenhouse Gas Research Department, Korea Institute of Energy Research) ;
  • Kang, Seong-Pil (Greenhouse Gas Research Department, Korea Institute of Energy Research)
  • 투고 : 2012.02.20
  • 심사 : 2012.04.03
  • 발행 : 2012.08.01

초록

가스 하이드레이트는 순수한 물이 이루는 격자구조 내에 다양한 가스분자들이 선택적으로 포획되어진 고체상의 화합물로, 최근 이산화탄소를 포집, 수송, 저장 하는 CCS (Carbon Capture and Storage)기술에 이를 응용하려는 연구가 활발히 진행되고 있다. 가스 하이드레이트를 적용한 CCS 기술의 핵심은 효과적으로 $CO_2$ 하이드레이트를 제조하는 기법의 개발이며, 본 연구에서는 초음파 노즐을 이용하여 수십 나노미터 직경의 미세수적을 통해 고속의 $CO_2$ 하이드레이트 제조기술 개발하였고, 이 과정의 특성을 파악해 보았다. 주파수 2.4 MHz의 초음파 노즐을 이용하여 미세직경의 수적을 분무하고 이송가스(carrier gas)로 $CO_2$를 적용, 미세 수적과 $CO_2$가 동시에 급속 냉각되는 저온 반응기에 도입되어 다공질 얼음입자가 직접 평균 $10.7{\mu}m$ 직경의 $CO_2$ 하이드레이트로 생성되는 연속공정을 개발하였다. 미세직경 얼음입자를 시작물로 하여 정압조건에서 $CO_2$ 하이드레이트가 생성되도록 하며 가스포집량을 측정, 그의 가스 포집속도를 알아본 결과, 미세직경이며 동시에 다공 얼음이 제공하는 높은 기-고 접촉면적으로 인해 가스 하이드레이트 생성에 매우 적합한 것을 알 수 있었으며, 제조된 $CO_2$ 하이드레이트의 자기보존효과(self-preservation effect)를 실험으로 확인함으로서 $CO_2$ 가스의 수송에도 이용 가능함을 알 수 있었다.

Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.

키워드

과제정보

연구 과제 주관 기관 : 한국에너지기술평가원(KETETP)

참고문헌

  1. Lee, H., Lee, C. S. and Kang, J. M., "Carbon dioxide Ocean Sequestration Using Gas Hydrate," HWAHAK KONGHAK, 41(2), 135-146(2003).
  2. Hendriks, C. A. and Blok, K., "Carbon Dioxide Recovery Using a Dual Gas Turbine IGCC Plant," Energ. Convers. Manage., 33(5-8), 387-396(1992). https://doi.org/10.1016/0196-8904(92)90035-U
  3. Farla, J. C. M., Hendriks, C. A. and Blok, K., "Carbon Dioxide Recovery from Industrial Processes," Energ. Convers. Manage., 29(6-9), 827-830(1995).
  4. Yeon, S. H., Seo, B. G., Park, Y. I. and Lee, G. H., 2001, "Carbon Dioxide Recovery Using Membrane Contactor-Stripper Hybrid Process," HWAHAK KONGHAK, 39(6), 709-714(2001).
  5. Yoon, J. H. and Lee, H., "Clathrate Phase Equilibria for the Water-Phenol Carbon Dioxide System," AIChE J., 43(7), 1884-1893(1997). https://doi.org/10.1002/aic.690430723
  6. Seo, Y. and Lee, H., "A New Hydrate-Based Recovery Process for Removing Chlorinated Hydrocarbons from Aqueous Solution," Environ. Sci. Technol., 35(16), 3386-3390(2001). https://doi.org/10.1021/es010528j
  7. Kang, S. P. and Lee, H., "Recovery of $CO_2$ from flue Gas Using Gas Hydratees: Thermodynamic Verification through Phase Equilibrium Measurement," Environ. Sci. Technol., 34(30), 4397-4400 (2000). https://doi.org/10.1021/es001148l
  8. Shindo, Y., Fujioka Y. and Komiyama, H., "Dissolution and Dispersion of $CO_2$ from a Liquid $CO_2$ Pool in Deep Ocean," Int. J. Chem. Kinet., 27(11), 1089-1095(1995). https://doi.org/10.1002/kin.550271106
  9. Robert, B. B. and Richard, K. D., "Effectiveness of $CO_2$ Sequestration in the Post-Industrial Ocean," Energ. Convers. Manage., 37(6-8), 1079-1086(1996). https://doi.org/10.1016/0196-8904(95)00302-9
  10. Holloway, S., "Safety of the Underground Disposal of Carbon Dioxide," Energ. Convers. Manage., 38, 241-245(1997). https://doi.org/10.1016/S0196-8904(96)00276-2
  11. Linga, P., Kumar, R., Lee, J. D., Ripmeester, J. A. and Englezos, P., "A New Apparatus to Enhance the Rate of Gas Hydrate Formation: Application to Capture of Carbon Dioxide," Int. J. Greenh. Gas Con., 4(4), 630-637(2010). https://doi.org/10.1016/j.ijggc.2009.12.014
  12. Gudmunsson, J. S., Parlaktuna, M. and Khokhar, A. A., "Storing Natural Gas as Frozen Hydrate," SPE Production and Engineering, 69-73(1994).
  13. Shimada, W., Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T. and Narita, H., "Texture Change of Ice on Anomalously Preserved Methane Clathrate Hydrate," J. Phys. Chem. B., 109(12), 5802-5807(2005). https://doi.org/10.1021/jp044624t
  14. Kuhs, W. F., Genov, G., Satykova, D. K. and Hansen, T., "Ice Perfection and Onset of Anamalous Preservation of Gas Hydrates," Phys. Chem. Chem. Phys., 6(21), 4917-4920(2004). https://doi.org/10.1039/b412866d
  15. Robert, C. R., John, M. P. and Bruce, E. P., The Properties of Gases & Liquids, 4th edition, McGraw-Hill(1988).

피인용 문헌

  1. Hydrate Formation vol.51, pp.4, 2013, https://doi.org/10.9713/kcer.2013.51.4.500
  2. Hydrate according to Temperature, Particle Diameter and Shape vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.602