DOI QR코드

DOI QR Code

연속공정에서 고체흡수제의 입자분석을 통한 재생반응기 주입 수분량에 따른 CO2 회수효율 영향 분석

Analysis of CO2 Capture Efficiency in Relation to the Inlet Moisture Content of the Regenerator in the Continuous Process by using Sorbent Analysis

  • 이도영 (충남대학교 녹색에너지기술 전문대학원.녹색에너지기술학과) ;
  • 김기찬 (한국에너지기술연구원 온실가스연구단) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 한문희 (충남대학교 녹색에너지기술 전문대학원.녹색에너지기술학과) ;
  • 이창근 (한국에너지기술연구원 온실가스연구단)
  • Lee, Do-Young (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Kim, Ki-Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Young Cheol (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Han, Moon-Hee (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Yi, Chang-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 투고 : 2012.02.13
  • 심사 : 2012.03.16
  • 발행 : 2012.08.01

초록

본 연구에서는 두 개의 기포유동층반응기로 구성된 연속공정에서 고체 흡수제의 입자분석을 이용하여 재생반응기 유동화 기체로 사용된 수분 주입량에 따른 H2O 전처리 효과에 대해 규명하였다. 또한 재생반응기의 고체 배출 구조를 underflow 형태에서 overflow 형태로 수정하여 $CO_2$ 회수효율을 비교 분석하였다. 재생반응기의 유동화 기체로 사용된 수분의 주입량에 따른 고체흡수제의 전처리 효과를 알아보기 위하여 각각의 조업변수에서 포집된 고체입자를 XRD(X-ray Diffraction), SEM (Scanning Electron Microscope), TGA 분석을 수행하였다. XRD 분석을 이용한 결과 재생반응기의 유동화 기체로 주입된 수분에 의해 $K_2CO_3{\cdot}1.5H_2O$의 입자구조가 형성됨을 확인하였으며 TGA 분석에서는 재생반응기로 주입된 수분량에 따라$K_2CO_3{\cdot}1.5H_2O$의 입자구조가 증가하는 경향성을 나타냈다. 재생반응기 내부에서 형성된 $K_2CO_3{\cdot}1.5H_2O$의 입자구조는 흡수반응 시 $CO_2$와의 반응성을 증가시켜 $CO_2$ 회수효율이 향상되는 전처리 효과를 나타내었다. 또한 재생반응기 고체 배출 구조를 underflow 형태에서 overflow 형태로 수정하여 $CO_2$ 회수효율을 비교 분석한 결과 약 3~8% 증가함을 확인하였다.

In this study, $CO_2$ capture efficiency in relation to the inlet moisture content of the regenerator was investigated using potassium-based sorbents in the continuous process composed of two bubbling fluidized-bed reactors, where solid outlet configuration in the regenerator was converted from underflow to overflow. XRD (X-ray Diffraction), SEM (Scanning Electron Microscope) and TGA were performed to find out the effect of water pre-treatment according to inlet moisture content in the regenerator. The $K_2CO_3{\cdot}1.5H_2O$ structure of solid sorbents has been increased as inlet moisture content of the regenerator increased. As a result, the $CO_2$ capture efficiency increased as the $K_2CO_3{\cdot}1.5H_2O$ structure of solid sorbents increased since the reactivity of the sorbents has been improved by that structure generated by the water pre-treatment. And $CO_2$ capture efficiency increased about 3~8% after sorbent outlet configuration of the regenerator was changed underflow to overflow.

키워드

참고문헌

  1. Yi, C. K., "Advances of Post-combustion Carbon Capture Technology by Dry Sorbent," Korean Chem. Eng. (HWAHAK KONGHAK), 48(2), 140-146 (2010).
  2. Yi, C. K., "Advances of Carbon Capture Technology," Korean Industrial Chemistry News, 12(1), 30-42(2009).
  3. Metz, B., "IPCC Special Report on Carbon Dioxide Capture and Storage," Cambridge University Press, New York(2005).
  4. Yi, C. K., Hong, S. W., Jo, S. H., Son, J. E. and Choi, J. H., "Absorption and Regeneration Characteristics of a Sorbent for Fluidized-Bed $CO_2$ Removal Process," Korean Chem. Eng. Res., 43(2), 294-298(2005).
  5. Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, U.S.A(1991).
  6. Kim, K. C., Pack, Y. C., Jo, S. H., Ryu, H. J. and Yi, C. K., "Study of Hydrodynamics and Reaction Characteristics of Kbased Solid Sorbents for $CO_2$ Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 48(4), 499-505(2010).
  7. Ryu, H. J., Pack, J. H., Kim H. K. and Pack, M. H., "Solid Circulation Characteristics in a 3KW Chemical-Looping Combustor," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(6), 1057-1062(2008).
  8. Hayashi, H., Taniuchi, J., Furuyashiki, N., Sugiyama, S., Hirano, S., Shigemoto, N. and Nonaka, T., Ind. Eng. Chem. Res., 37, 185 (1998). https://doi.org/10.1021/ie9704455
  9. Lee, S. C., Choi, B. Y., Ryu, C. K., Ahn, Y. S., Lee, T. J. and Kim, J. C., "The Effect of Water on the Activation and the $CO_2$ Capture Capacities of Alkali Metal-based Sorbents," Korean J. Chem. Eng., 23(3), 374-379(2006). https://doi.org/10.1007/BF02706737
  10. Lee, S. C., Chae, H. J., Choi, B. Y., Jung, S. Y., Ryu, C. Y., Pack, J. J., Baek, J. I., Ryu, C. K. and Kim, J. C., "The Effect of Relative Humidity on $CO_2$ Capture Capacity of Potassium-based Sorbents," Korean J. Chem. Eng., 28(2), 480-486(2011). https://doi.org/10.1007/s11814-010-0398-x
  11. Seo, Y. W., Moon, Y. S., Jo, S. H., Ryu, C. K. and Yi, C. K., "Effects of Steam and Temperature on $CO_2$ Capture Using A Dry Regenerable Sorbent in a Bubbling Fluidized Bed," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 43(4), 537-541(2005).
  12. Seo, Y. W., Jo, S. H., Ryu, H. J., Bae, D. H., Ryu, C. K. and Yi, C. K., "Effect of Water Pretreatment on $CO_2$ Capture Using a Potassium-based Solid Sorbent in a Bubbling Fluidized Bed Reactor," Korean J. Chem. Eng., 24(3), 457-460(2007). https://doi.org/10.1007/s11814-007-0079-6
  13. Seo, Y. W., Jo, S. H., Ryu, C. K. and Yi, C. K., "Effects od Water Vapor Pretreatment Time and Reaction Temperature on $CO_2$ Capture Characteristics of a Sodium-based Solid Sorbent in a Bubbling Fluidized Bed Reactor," Chemosphere, 69, 712-718 (2007). https://doi.org/10.1016/j.chemosphere.2007.05.036
  14. Kim, K. C., Pack, Y. C., Jo, S. H. and Yi, C. K., "The Effect of $CO_2$ or Steam Partial Pressure in the Regeneration of Solid Sorbents on the $CO_2$ Capture Efficiency in the Two-interconnected Bubbling Fluidized-beds System," Korean J. Chem. Eng., 28(10), 1986-1989(2011). https://doi.org/10.1007/s11814-011-0054-0
  15. Park, Y. C., Kim, K. C., Lee, S. Y., Jo, S. H. and Yi, C. K., " Effects of Steam on the Regeneration of Potassium-Based Solid Sorbents in Carbon Dioxide Capture System Composed of Two-interconnected Bubbling Beds," Ascon, Japan(2008).
  16. Lee, S. C., Chae, H. J., Choi, B. Y., Jung, S. Y., Ryu, C. Y., Pack, J. J., Baek, J. I., Ryu, C. K. and Kim, J. C., "The Effect of Relative Humidity on $CO_2$ Capture Capacity of Potassium-based Sorbents," Korean J. Chem. Eng., 28(2), 480-486(2011). https://doi.org/10.1007/s11814-010-0398-x
  17. Lee, S, C. and Kim J. C., "Dry Potassium-Based Sorbent for $CO_2$ Capture," Catal. Surv. Asia., 11, 171-185(2007). https://doi.org/10.1007/s10563-007-9035-z

피인용 문헌

  1. Dry Potassium Sorbent During Carbonation vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.333
  2. Performance Analysis of Absorbent for Post-combustion CO2 Capture by Regeneration vol.27, pp.1, 2016, https://doi.org/10.7316/KHNES.2016.27.1.083