DOI QR코드

DOI QR Code

Study on Isothermal Crystallization Characteristics of PLA Film by Adding APP as a Nucleation Agent

APP 핵제를 첨가한 PLA 필름의 등온결정화 특성에 관한 연구

  • Kim, Gyu-Sun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Moon-Sun (Bio/Nano-Fusion Material Research Center, Sungkyunkwan University) ;
  • Kim, Byung-Woo (Department of Chemical Engineering, Sungkyunkwan University)
  • 김규선 (성균관대학교 화학공학과) ;
  • 김문선 (성균관대학교 바이오/나노융합재료센터) ;
  • 김병우 (성균관대학교 화학공학과)
  • Received : 2011.10.31
  • Accepted : 2011.12.06
  • Published : 2012.06.01

Abstract

In this paper, it was studied on the crystallization characteristics of PLA film by adding ammonium phosphate (APP) as a nucleation agent. Crystallinity and crystallite size of PLA film were determined by Scherrer equation. Crystallization rate constant of PLA film was calculated through Avrami equation. Film samples in the study were prepared by two steps. PLA films were prepared by adding 1, 5, and 10 wt%, respectively, at first and was secondly annealed at 130, 140, and $150^{\circ}C$. Crystallinity of pure PLA film was average 4.6% and those of PLA film with adding 1, 5, and 10 wt% APP were 12.2, 47.7, and 50.0%, respectively. Crystallite size of PLA film was average 28.0 nm and those of PLA film with adding 1, 5, and 10 wt% APP were 26.8, 24.0, and 19.0 nm, respectively. Crystallization rate constants of PLA film with 1 wt% APP were 2.12, 3.86, and 0.27 by annealing at 130, 140, and $150^{\circ}C$, respectively, where was higher than pure PLA film and those with adding 5 and 10 wt% APP, respectively.

본 논문에서는 ammonium phosphate (APP)를 핵제로 사용한 PLA 필름에 대한 결정화 특성을 연구하였다. PLA 필름의 결정화도와 결정크기는 Scherrer 식을 이용하여 결정하였으며 결정화속도 상수는 Avrami 식을 이용하여 계산하였다. 본 연구에 사용한 시료는 2단계 과정을 거쳐 제조되었다. 먼저 APP를 1, 5, 10 wt% 첨가한 필름을 각각 제조하고 130, 140, $150^{\circ}C$에서 어닐링시켜서 시료로 사용하였다. 순수한 PLA 필름의 결정화도는 평균 4.6%였으며 APP를 1, 5, 10 wt% 첨가한 필름의 평균 결정화도는 각각 12.2, 47.7, 50.0%였다. 순수한 PLA 필름의 평균 결정크기는 28.0 nm였으며 APP를 1, 5, 10 wt% 첨가한 필름의 평균 결정크기는 26.8, 24.0, 19.0 nm였다. APP를 1 wt% 첨가한 PLA 필름의 130, 140, $150^{\circ}C$ 어닐링 온도별 결정화속도 상수는 각각 2.12, 3.86, 0.27로, $140^{\circ}C$에서 어닐링시킨 PLA 필름의 결정속도가 가장 빨랐으며 순수한 필름, 5, 10 wt% 첨가한 필름보다 높았다.

Keywords

References

  1. Yoon, C. S. and Ji, D. S., "Preparation of PLA/PEG Bolock Copolymer via Melt Blend," Text. Sci. Eng., 43(5), 235-244(2006).
  2. Ray, S. S and Okamoto, M., "Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites," Macromol. Rapid Commun., 24, 815-840(2003). https://doi.org/10.1002/marc.200300008
  3. Drumright, R. E., Gruber, P. R. and Henton, D. E., "Polylactic Acid Technoloht," Adv. mater., 12, 1841-1846(2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  4. Lunt, J., "Large-scale Production, Properties and Commercial Applications of Polylactic acid Polymers," Polym. Degrad. Stabil., 59, 145-152(1998). https://doi.org/10.1016/S0141-3910(97)00148-1
  5. Fang, Q. and Hanna, M. A., "Rhelolgical Properties of Amorphous and Semicrystalline Polylactic Acid Polymers," Ind. Crop. Prod., 10, 47-53(1999). https://doi.org/10.1016/S0926-6690(99)00009-6
  6. Kawamoto, N., Sakai, A., Horikoshi, T., Urushihara, T. and Tobita, E., "Physical and Mec-hanical Properties of Poly(L-lactic acid) Nucleated by Dibenzoylhydrazide Compound," J. Appl. Polym. Sci., 103, 244-250(2007). https://doi.org/10.1002/app.25185
  7. Zhai, W., Ko, Y. R., Zhu, W., Wong, A. S. and Park, C. B., "A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed $CO_2$," Int. J. Mol. Sci., 10, 5381-5397(2009). https://doi.org/10.3390/ijms10125381
  8. Li, H. and Huneault, M. A., "Effects of Nucleation and Plasticization on the Crystallization of Poly(lactic acid)," Polymer, 48(23), 6855-6866(2007). https://doi.org/10.1016/j.polymer.2007.09.020
  9. Harris, A. M. and Lee, E. C., "Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity," J. Appl. Polym. Sci., 107(4), 2246-2255(2008). https://doi.org/10.1002/app.27261
  10. Suardana, N. P. G., Min. S. K. and Lim, J. K., "Effects of Diammonium Phosphate on the Flammability and Mechnical Properties of Bio-composites," Mater. Design., 32, 1990-1999(2011). https://doi.org/10.1016/j.matdes.2010.11.069
  11. Shumao, L., Jie, R., Hua, Y., Tao, Y. and Weizhong, Y., "Influence of Ammonium Polyphosphate on the Flame Retardancy and Mechanical Properties of Ramie Fiber-Reinforced Poly(lactic-acid) Biocomposites," Polym. Int., 59, 242-248(2010).
  12. Xiao, H., Yang, L., Ren, X., Jiang, T. and Yeh, J. T., "Kinetics and Crystal Structure of Poly(latic acid) Crystallized Nonisothermally: Effect of Plasticizer and Nucleating Agent," Polym. Composite, 31(12), 2057-2068(2010). https://doi.org/10.1002/pc.21004
  13. Xiao, H. W. Li, P., Ren, X., Jiang, T. and Yeh, J. T., "Isothermal Crystallization Kinetics and Crystal Structure of Poly(latics acid): Effect of Triphenyl Phosphate and Talc," J. Appl. Polym. Sci., 118, 3558-3569(2010). https://doi.org/10.1002/app.32728
  14. Kim, J., Kim, M. S. and Kim, B. W., "Study on Isothermal Crystallization Behavior and Surface Properties of Non-Oriented PLA Film with Annealing Temperature," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 49(5), 611-616(2011). https://doi.org/10.9713/kcer.2011.49.5.611
  15. Yu, L., Liu, H., Xie, F. and Li, X., "Effect of Annealing and Orientation on Microstructures and Mechanical Properties of Poly-lactic Acid," Polym. Eng. Sci., 634-641(2008).
  16. Fakirov, S., Fischer, E. W., Hoffmann, R. and Schmidt, G. F., "Structure and Properties of Poly(ethylene terephthalate) Crystallized by Annealing in the highly Oriented State: 2. Meltig Behaviour and the Mosaic Block Structure of the Crystalline Layers," Poylmer, 18(11), 1121-1129(1977).
  17. Rao, Y., Greener, J., Avila-Orta, C. A., Hsiao, B. S. and Blanton, T. N., "The Relationship between Microstructures and Toughness of Biaxially Oriented Semicrystalline Polyester Films," Polymer, 49(10), 2507-2514(2008). https://doi.org/10.1016/j.polymer.2008.03.046
  18. Papageorgiou, G. Z., Achilias, D. S., Bikiaris, D. N. and Karayannidis, G. P., "Crystallization Kinetics and Nucleation Activity of Filler in Polypropylene/Surface-Treated $SiO_2$ Nano-composites," Thermochim. Acta., 427(1-2), 117-128(2005). https://doi.org/10.1016/j.tca.2004.09.001
  19. Lim, L. T., Auras, R. and Rubino, M., "Processing Technologies for Poly(lactic acid)," Prog. Polym. Sci., 33(8), 820-852(2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004
  20. Danilchenko, S. N., Kukharenko, O. G., Moseke, C., Protsenko, I. Y., Sukhodub, L. F. and Sulkio-Cleff, B., "Determination of the Bone Mineral Crystallite Size and Lattice Strain from Diffractin Line Broading," Crystal. Res. Technol., 37(11), 1234-1240(2002). https://doi.org/10.1002/1521-4079(200211)37:11<1234::AID-CRAT1234>3.0.CO;2-X
  21. Du, A., Koo, D., Ziegler, M. and Cairncross, R. A., "The Effect of Heat Treatment on Water Sorption in Polylactide Composites via Changes in Glass-Transition Temperature and Crystallization Kinetics," Polym. Physics., 49, 873-881(2011). https://doi.org/10.1002/polb.22258
  22. Kim, H. C., Lee, H. S., Kim, H. Y., Pak, P. K. and Lee, B. O., "Crystallizaion behaviour for poly(ethylene terephthalate) Containing Metal and Phosphorous Compounds," Polymer(Korea), 23(1), 25-31(1999).

Cited by

  1. Effect of ion exchange resin on increased surface area crystallization process for purification of vancomycin vol.29, pp.11, 2012, https://doi.org/10.1007/s11814-012-0135-8
  2. Synthesis of PLLA-block-PMMA Copolymer and Characteristics of Biaxially Oriented PLA Film Including the Same vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2014.1121
  3. Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends vol.33, pp.3, 2016, https://doi.org/10.1007/s11814-015-0202-z