DOI QR코드

DOI QR Code

A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas

연소기체로부터 CO2를 포집하는 기포 유동층 공정에 관한 모델

  • Received : 2011.11.21
  • Accepted : 2012.02.07
  • Published : 2012.06.01

Abstract

This study developed a simple model to investigate effects of important operating parameters on performance of a bubbling-bed adsorber and regenerator system collecting $CO_2$ from flue gas. The chemical reaction rate was used with mean particles residence time of a reactor to determine the extent of conversion in both adsorber and regenerator reactors. Effects of process parameters - temperature, gas velocity, solid circulation rate, moisture content of feed gas - on $CO_2$ capture efficiency were investigated in a laboratory scale process. The $CO_2$ capture efficiency decreased with increasing temperature or gas velocity of the adsorber. However, it increased with increasing the moisture content of the flue gas or the regenerator temperature. The calculated $CO_2$ capture efficiency agreed to the measured value reasonably well. However the present model did not agree well to the effect of the solid circulation rate on $CO_2$ capture efficiency. Better understanding on contact efficiency between gas and particles was needed to interpret the effect properly.

본 연구는 연소기체로부터 $CO_2$ 기체를 포집하는 기포 유동층 흡착 및 재생 반응기 공정의 주요 운전변수의 영향을 조사하기 위해서 단순화된 공정모델을 개발하였다. 반응속도와 반응기에서 고체입자의 평균체류시간을 이용하여 흡착탑과 재생탑에서 각 반응 전환율을 계산하였다. 실험실 규모 기포 유동층 공정에 적용하여 $CO_2$ 포집효율에 대한 온도, 기체유속, 고체순환속도, 연소기체 중 수분농도의 영향을 조사하였다. $CO_2$ 포집효율은 흡착탑의 온도 혹은 유속이 증가함에 따라서 감소하였다. 그러나 연소기체의 수분농도 혹은 재생탑의 온도가 증가함에 따라서 증가하였다. 계산된 $CO_2$ 포집효율은 측정값과 잘 일치하였다. 그러나 본 모델은 $CO_2$ 포집효율에 대한 고체순환속도의 영향과 잘 일치하지 않았다. 이의 해석을 위해서는 기체-고체 접촉효율에 대한 이해가 더 필요하였다.

Keywords

Acknowledgement

Supported by : 한국에너지 기술평가원(KETEP)

References

  1. Yi, C. K., Hong, S. W., Jo, S. H., Son, J. E. and Choi, J. H., "Absorption and Regeneration Characteristics of a Sorbent for Fluidized-Bed $CO_2$ Removal Process," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 43(2), 294-298(2005).
  2. Yi, C.-K., Jo, S.-H., Seo, Y., Lee, J.-B. and Ryu, C.-K., "Continuous Operation of the Potassium-Based Dry Sorbent $CO_2$ Capture Process with Two Fluidized-Bed Reactors," Int. J. Greenhouse Gas Control, 1(1), 31-36(2007). https://doi.org/10.1016/S1750-5836(07)00014-X
  3. Lee, J. B., Ryu, C. K., Baek, J.-I., Lee, J. H., Eom, T. H. and Kim, S. H., "Sodium-Based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas," Ind. Eng. Chem. Research, 47(13), 4465-4472(2008). https://doi.org/10.1021/ie0709638
  4. Yi, C.-K., Jo, S.-H. and Seo, Y., "The Effect of Voidage on the $CO_2$ Sorption Capacity of K-Based Sorbent in a Dual Circulating Fluidized Bed Process," J. Chem. Eng. Japan, 41(7), 691-694(2008). https://doi.org/10.1252/jcej.07WE064
  5. Abanades, J. C., Alonso, M., Rodriguez, N., Gonzalez, B., Grasa, G. and Murillo, R., "Capturing $CO_2$ from Combustion Flue Gases with a Carbonation Calcination Loop. Experimental Results and Process Development," Energy Procedia, 1(1), 1147-1154(2009). https://doi.org/10.1016/j.egypro.2009.01.151
  6. Alonso, M., Rodriguez, N., Grasa, G. and Abanades, J. C., "Modelling of a Fluidized Bed Carbonator Reactor to Capture $CO_2$ from a Combustion Flue Gas," Chem. Eng. Sci., 64(5), 883-891(2009). https://doi.org/10.1016/j.ces.2008.10.044
  7. Fang, F., Li, Z. and Cai, N., "Continuous $CO_2$ Capture from Flue Gases Using a Dual Fluidized Bed Reactor with Calcium-Based Sorbent," Ind. Eng. Chem. Research, 48(24), 11140-11147(2009). https://doi.org/10.1021/ie901128r
  8. Park, K.-W., Park, Y. S., Park, Y. C., Jo, S.-H. and Yi, C.-K., "Study of $CO_2$ Carbonation-Regeneration Characteristics of Potassium-Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47(3), 349-354(2009).
  9. Park, Y. C., Jo, S.-H., Park, K.-W., Park, Y. S. and Yi, C.-K., "Effect of Bed Height on the Carbon Dioxide Capture by Carbonation/Regeneration Cyclic Operations Using Dry Potassium-Based Sorbents," Korean J. Chem. Eng., 26(3), 874-878(2009). https://doi.org/10.1007/s11814-009-0146-2
  10. Seo, Y., Jo, S.-H., Ryu, C. K. and Yi, C.-K., "Effect of Reaction Temperature on $CO_2$ Capture Using Potassium-based Solid Sorbent in Bubbling Fluidized-bed Reactor," J. Environ. Eng., 135(6), 473-477(2009). https://doi.org/10.1061/(ASCE)0733-9372(2009)135:6(473)
  11. Stroehle, J., Lasheras, A., Galloy, A. and Epple, B., "Simulation of the Carbonate Looping Process for Post-Combustion $CO_2$ Capture from a Coal-Fired Power Plant," Chem. Eng. & Tech., 32(3), 435-442(2009). https://doi.org/10.1002/ceat.200800569
  12. Yi, C.-K., "Advances of Post-Combustion Carbon Capture Technology by Dry Sorbent," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(2), 140-146(2010).
  13. Kim, K.-C., Kim, K.-Y., Park,Y. C., Jo, S.-H., Ryu, H.-J. and Yi, C.-K., "Study of Hydrodynamics and Reaction Characteristics of K-Based Solid Sorbents for $CO_2$ Capture in a Continuous System Composed of Two Bubbling Fluidized-Bed Reactors," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(4), 499-505(2010).
  14. Choi, J.-H., Yi, C.-K. and Jo, S.-H., "A Model on an Entrained Bed-Bubbling Bed Process for $CO_2$ Capture from Flue Gas," Korean J. Chem. Eng., 28(4), 1144-1147(2011). https://doi.org/10.1007/s11814-010-0477-z
  15. Lapple, C. E., "Processes Use Many Collection Types," Chem. Eng., 58, 144-151(1951).
  16. Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston(1991).
  17. Kolbitsch, P., Proll, T. and Hofbauer, H., "Modeling of a 120 kW Chemical Looping Combustion Reactor System Using a Ni-based Oxygen Carrier," Chem. Eng. Sci., 64(1), 99-108(2009). https://doi.org/10.1016/j.ces.2008.09.014

Cited by

  1. Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas vol.31, pp.2, 2014, https://doi.org/10.1007/s11814-013-0212-7
  2. Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.81
  3. Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.22
  4. Test Operation Results of the 10 MWe-scale Dry-sorbent CO2 Capture Process Integrated with a Real Coal-fired Power Plant in Korea vol.63, pp.None, 2012, https://doi.org/10.1016/j.egypro.2014.11.245