DOI QR코드

DOI QR Code

금 표면 위에 형성된 글루타싸이온 층의 표면 물성

Surface Properties of Glutathione Layer Formed on Gold Surfaces

  • 박진원 (서울과학기술대학교 화학공학과)
  • Park, Jin-Won (Department of Chemical Engineering, College of Engineering, Seoul National University of Science and Technology)
  • 투고 : 2011.07.31
  • 심사 : 2011.10.16
  • 발행 : 2012.04.01

초록

이산화티탄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione 층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층표면과 이산화티탄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 정전기적인 특성들이 정량적으로 산출되었다. 이 특성들이 염 농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8과 11에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. pH 8과 11에서 Glutathione 층의 표면이 이산화티탄 표면보다 높은 정전기적 특성을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.

It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.

키워드

참고문헌

  1. Sun, S. Q., Mendes, P., Critchley, K., Diegoli, S., Hanwell, M., Evans, S. D., Leggett, G. J., Preece, J. A. and Richardson, T. H., "Fabrication of Gold Micro- and Nanostructures by Photolithographic Exposure of Thiolstabilized Gold Nanoparticles," Nano Lett., 6(3), 345-350(2006). https://doi.org/10.1021/nl052130h
  2. Peter, A., Baia, M., Toderas, F., Laz r, M., Tudoran, L. B. and Danciu, V., "Photocatalysts Based on Gold-titania Composites," Studia Universitatis Babes-bolyai Chemia, 54(3), 161-171(2009).
  3. Kowalska, E., Mahaney, O. O. P., Abe, R. and Ohtani, B., "Visible-light-induced Photocatalysis Through Surface Plasmon Excitation of Gold on Titania Surfaces," Phys. Chem. Chem. Phys., 12(10), 2344-2355(2010). https://doi.org/10.1039/b917399d
  4. Perlich, J., Memesa, M., Diethert, A., Metwalli, E., Wang, W., Roth, S. V., Timmann, A., Gutmann, J. S. and Mller-Buschbauma, P., "Preservation of the Morphology of a Self-encapsulated Thin Titania Film in a Functional Multilayer Stack: An X-ray Scattering Study," Chem. Phys., 10(5), 799-805(2009).
  5. Li, J. and Zeng, H. C., "Preparation of Monodisperse Au/$TiO_2 $ Nanocatalysts Via Self-assembly," Chem. Mater., 18(18), 4270-4277(2006). https://doi.org/10.1021/cm060362r
  6. Tian, Y. and Tatsuma, T., "Mechanisms and Applications of Plasmon-induced Charge Separation at $TiO_2 $ Films Loaded with Gold Nanoparticles," J. Am. Chem. Soc., 127(20), 7632-7637(2005). https://doi.org/10.1021/ja042192u
  7. Kafizas, A., Kellici, S., Darr, J. A. and Parkin, I. P., "Titanium Dioxide and Composite Metal/metal Oxide Titania Thin Films on Glass: A Comparative Study of Photocatalytic Activity," J. Photochem. Photobiol. A-Chem., 204(2-3), 183-190(2009). https://doi.org/10.1016/j.jphotochem.2009.03.017
  8. Valden, M., Lai, X. and Goodman, D. W., "Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties," Science, 281(5383), 1647-1650(1998). https://doi.org/10.1126/science.281.5383.1647
  9. Sakurai, H., Tsubota, S. and Haruta, M., "Hydrogenation of $CO_2$ over Gold Supported on Metal Oxides," Appl. Catal. A-Gen., 102(2), 125-136(1993). https://doi.org/10.1016/0926-860X(93)80224-E
  10. Li, X., Fu, J., Steinhart, M., Kim, D. H. and Knoll, W., "Au/titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-inorganic Nanohybridization in Thin Film Block Copolymer Templates," Bull. Korean Chem. Soc., 28(6), 1015-1020(2007). https://doi.org/10.5012/bkcs.2007.28.6.1015
  11. Schmid, G., "Large Clusters and Colloids - Metals in the Embryonic State," Chem. Rev., 92(8), 1709-1727(1992). https://doi.org/10.1021/cr00016a002
  12. Jo, K., Kang, H. J. and Yang, H., "Enhancement of the Electrocatalytic Activity of Gold Nanoparticles Via Anodic Treatment and the Decrease of the Enhanced Activity with Aging," Bull. Korean Chem. Soc., 32(2), 728-730(2011). https://doi.org/10.5012/bkcs.2011.32.2.728
  13. Cheow, W. S., Li, S. and Hadinoto, K., "Spray Drying Formulation of Hollow Spherical Aggregates of Silica Nanoparticles by Experimental Design," Chem. Eng. Res. Des., 88(5-6A), 673-685 (2010). https://doi.org/10.1016/j.cherd.2009.11.012
  14. Chou, J. and McFarland, E. W., "Direct Propylene Epoxidation on Chemically Reduced Au Nanoparticles Supported on Titania," Chem. Commun., 5(14), 1648-1649(2004).
  15. Dasog, M. and Scott Robert, R. W., "Understanding the Oxidative Stability of Gold Monolayer-protected Clusters in the Presence of Halide Ions Under Ambient Conditions," Langmuir, 23(6), 3381-3387(2007). https://doi.org/10.1021/la0627415
  16. Sandhyarani, N. and Pradeep, T., "Oxidation of Alkanethiol Monolayers on Gold Cluster Surfaces," Chem. Phys. Lett., 338(1), 33-36(2001). https://doi.org/10.1016/S0009-2614(01)00230-5
  17. Brewer, N. J., Rawsterne, R. E., Kothari, S. and G. J. Leggett, G. J., "Oxidation of Self-assembled Monolayers by UV Light with a Wavelength of 254 nm," J. Am. Chem. Soc., 123(17), 4089-4090 (2001). https://doi.org/10.1021/ja0155074
  18. Ducker, W. A. and Senden, T. J., "Measurement of Forces in Liquids Using a Force Microscope," Langmuir, 8(7), 1831-1836(1992). https://doi.org/10.1021/la00043a024
  19. Binnig, G., Quate, C. F. and Gerber, C., "Atomic Force Microscope," Phys. Rev. Lett., 56(9), 930-933(1986). https://doi.org/10.1103/PhysRevLett.56.930
  20. Derjaguin, B. V. and Landau, L., "The Theory of Stability of Highly Charged Lyophobic Sols and Coalescence of Highly Charged Particles in Electrolyte Solutions," Acta Physiochem. URSS, 14(11), 633-652(1941).
  21. Cleveland, J. P., Manne, S., Bocek, D. and Hansma, P. K., "A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy," Rev. Sci. Instrum., 64(2), 403-405(1993). https://doi.org/10.1063/1.1144209
  22. Derjaguin, B., "On the Repulsive Forces Between Charged Colloid Particles and on the Theory of Slow Coagulation and Stability of Lyophobe Sols," Trans. Faraday Soc., 35(3), 203-214(1940). https://doi.org/10.1039/tf9403500203
  23. Israelachvili, J. N. and Adams, G. E., "Measurement of Forces Between 2 Mica Surfaces in Aqueous-electrolyte Solutions in Range 0-100 nm," J. Chem. Soc. Faraday Trans., 74, 975-1001(1978). https://doi.org/10.1039/f19787400975
  24. Shubin, V. E. and Kekicheff, P., "Electrical Double-layer Structure Revisited Via a Surface Force Apparatus - Mica Interfaces In Lithium-nitrate Solutions," J. Colloid Interface Sci., 155(1), 108-123(1993). https://doi.org/10.1006/jcis.1993.1016
  25. Parker, J. L. and Christenson, H. K., "Measurements of the Forces Between a Metal-surface and Mica Across Liquids," J. Chem. Phys., 88(12), 8013-8014(1988). https://doi.org/10.1063/1.454260
  26. O'Shea, S. J., Welland, M. E. and Pethica, J. B., "Atomic-force Microscopy of Local Compliance at Solid-liquid Interfaces," Chem. Phys. Lett., 223(4), 336-340(1994). https://doi.org/10.1016/0009-2614(94)00458-7
  27. Derjaguin, B. V., "Analysis of Friction and Adhesion IV. The Theory of the Adhesion of Small Particles," Kolloid Z., 69(2), 155-164(1934). https://doi.org/10.1007/BF01433225
  28. U. Hartmann, U., "Van der Waals Interactions Between Sharp Probes and Flat Sample Surfaces," Phys. Rev. B., 43(3), 2404-2407(1991). https://doi.org/10.1103/PhysRevB.43.2404
  29. Israelachivili, J. N., Intermolecular & Surface Forces, Academic Press, New York, 183-192(1991).
  30. Feiler, A., Jenkins, P. and Ralston, J., "Metal Oxide Surfaces Separated by Aqueous Solutions of Linear Polyphosphates: DLVO and non-DLVO Interaction Forces," Phys. Chem. Chem. Phys., 2(24), 5678-5683(2000). https://doi.org/10.1039/b005505k
  31. Verwey, E. J. W. and Overbeek, J. T. G., Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63(1948).
  32. Hogg, R., Healy, T. W. and Fuersten, D. W., "Mutual Coagulation of Colloidal Dispersions," Trans. Faraday Soc., 62(522P), 1638-1651(1966). https://doi.org/10.1039/tf9666201638
  33. Hunter, R. J., Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417(1987).
  34. Chan, D. Y. C., Pashley, R. M. and White, L. R., "A Simple Algorithm for the Calculation of the Electrostatic Repulsion Between Identical Charged Surfaces in Electrolyte," J. Colloid Interface Sci., 77(1), 283-285(1980). https://doi.org/10.1016/0021-9797(80)90445-2
  35. Parker, J. L., "Surface Force Measurements in Surfactant Systems," Prog. Surf. Sci., 47(3), 205-271(1994). https://doi.org/10.1016/0079-6816(94)90019-1
  36. Park, J.-W. and Ahn, D. J., "Temperature Effect on Nanometer-scale Physical Properties of Mixed Phospholipid Monolayers," Colloids. Surf. B: Biointerfaces, 62(1), 157-161(2008). https://doi.org/10.1016/j.colsurfb.2007.09.020
  37. Ducker, W. A., Senden, T. J. and Pashley, R. M., "Direct Measurement of Colloidal Forces Using an Atomic-force Microscope," Nature, 353(6341), 239-241(1991). https://doi.org/10.1038/353239a0
  38. Horn, R. G., Smith, D. T. and Haller, W., "Surface Forces and Viscosity of Water Measured Between Silica Sheets," Chem. Phys. Lett., 162(4-5), 404-408(1989). https://doi.org/10.1016/0009-2614(89)87066-6
  39. Pashley, R. M., "DLVO and Hydration Forces Between Mica Surfaces in $Li^+$, $K^+$, $Li^+$, and $Cs^+$ Electrolyte-solution - a Correlation of Double-layer and Hydration Forces with Surface Cation-exchange Properties," J. Colloid Interface Sci., 83(2), 531-546(1981). https://doi.org/10.1016/0021-9797(81)90348-9

피인용 문헌

  1. Soft-lithography for Manufacturing Microfabricated-Circuit Structure on Plastic Substrate vol.50, pp.5, 2012, https://doi.org/10.9713/kcer.2012.50.5.929