DOI QR코드

DOI QR Code

Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films

에폭시 변성 실리카 나노입자/폴리우레탄-우레아 나노복합체 필름의 제조 및 특성 연구

  • Joo, Jin (Department of Applied chemistry, Kyungpook National University) ;
  • Kim, Hyeon Seok (Department of Applied chemistry, Kyungpook National University) ;
  • Kim, Jin Tae (Surface Technology Research Group, POSCO) ;
  • Yoo, Hye Jin (Surface Technology Research Group, POSCO) ;
  • Lee, Jae Ryung (Surface Technology Research Group, POSCO) ;
  • Cheong, In Woo (Department of Applied chemistry, Kyungpook National University)
  • 주진 (경북대학교 응용화학과) ;
  • 김현석 (경북대학교 응용화학과) ;
  • 김진태 (포스코 표면처리연구 그룹) ;
  • 유혜진 (포스코 표면처리연구 그룹) ;
  • 이재륭 (포스코 표면처리연구 그룹) ;
  • 정인우 (경북대학교 응용화학과)
  • Received : 2011.06.29
  • Accepted : 2011.09.01
  • Published : 2012.04.01

Abstract

Hydrophilic silica nanoparticles (SNPs) were treated by using 3-glycidoxypropyltrimethoxy silane (GPTMS) and then they were blended with polyurethane-urea (PUU) emulsions to obtain SNPs/PUU nanocomposite films. Thermo-mechanical properties of the nanocomposite films were investigated by varying the grafted amount of GPTMS onto SNPs and the contents of SNPs in the PUU matrix. The thermo-mechanical properties of the nanocomposite films were also compared in terms of the dispersibility of SNPs in the PUU matrix and thermal curing of the GPTMS-grafted SNPs. The maximum amount of grafted GPTMS was $1.99{\times}10^{-6}\;mol/m^2$, and which covered ca. 53% of the total SNP surface area. $^{29}Si$ CP/MAS NMR analyses with the deconvolution of peaks revealed the details of polycondensation degree and patterns of GPTMS in the surface modification of SNPs. The surface modification did not significantly affect colloidal stability of the SNPs in aqueous medium; however, the hydrophobic modification of SNPs offered a favorable effect on the dispersibility of SNPs in the PUU matrix as well as better thermal stability. XRD patterns revealed that GPTMS-grafted SNPs broadened the reduced the characteristic peak of polyol in PUU matrix. The composite films became rigid and less flexible as the SNP content increased from 5 wt.% to 20 wt.%. Particularly, Young's modulus and tensile modulus significantly increased after the thermal curing reaction of the epoxy groups in the SNPs.

3-Glycidoxypropyltrimethoxy silane(GPTMS)으로 친수성의 실리카 나노입자(SNPs)를 소수화하였으며, 소수화된 SNPs를 폴리우레탄-우레아(PUU) 에멀젼과 혼합하여 SNPs/PUU 나노복합체 필름을 제조하였다. 필름 제조 후 PUU 매트릭스 내 SNPs의 함량, SNPs 표면의 소수화 정도, 에폭시 그룹과의 열경화 반응 여부가 필름의 물성에 미치는 영향을 분석하였다. SNP 표면에 도입된 GPTMS의 최대 함량은 $1.99{\times}10^{-6}\;mol/m^2$로 SNP 표면적 기준으로 약 53% 수준이었다. GPTMS에 의한 소수화로 PUU 매트릭스 내 SNPs의 분산성이 향상되었으며, SNPs 함량이 5 wt.%에서 20 wt.%로 증가함에 따라 SNPs/PUU 나노복합체 필름의 유연성은 감소하였으나, 열 안정성은 증가하였다. 특히 Young's modulus와 tensile modulus는 에폭시의 열경화 반응 후에 크게 증가하였다.

Keywords

Acknowledgement

Supported by : (주)POSCO

References

  1. Krishnamoorti, R., Vaia, R. A. and Giannelis, E. P., "Structure and Dynamics of Polymer-layered Silicate Nanocomposites," Chem. Mater., 8, 1728-1734(1996). https://doi.org/10.1021/cm960127g
  2. Kornmann, X., Berglund, L. A. and Sterte, J., "Nanocomposites Based on Montmorillonite and Unsaturated Polyester," Polym. Eng. Sci., 38, 1351-1358(1998). https://doi.org/10.1002/pen.10305
  3. Huang, J. C., Zhu, Z. K., Yin, J., Qian, X. F. and Sun, Y. Y., "Poly(etherimide)/montmorillonite Nanocomposites Prepared by Melt Intercalation: Morphology, Solvent Resistance Properties and Thermal Properties," Polymer, 42, 873-877(2000).
  4. Huang, X. and Brittain, W. J., "Synthesis and Characterization of PMMA Nanocomposites by Suspension and Emulsion Polymerization," Macromolecules, 34, 3255-3260(2001). https://doi.org/10.1021/ma001670s
  5. Moon, J. S., Park, J. H., Lee, T. Y., Kim, Y. W., Yoo, J. B., Park, C. Y., Kim, J. M. and Jin, K. W., "Transparent Conductive Film Based on Carbon Nanotubes and PEDOT Composites," Diamond Relat. Mater., 14, 1882-1887(2005). https://doi.org/10.1016/j.diamond.2005.07.015
  6. Xie, X.-L., Mai, Y.-W. and Zhou, X.-P., "Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review," Mater. Sci. Eng., R: Reports, R49, 89-112(2005).
  7. Lau, K.-T., Gu, C. and Hui, D., "A Critical Review on Nanotube and Nanotube/nanoclay Related Polymer Composite Materials," Composites, B: Eng., 37B, 425-436(2006).
  8. Hughes, M., Shaffer, M. S. P., Renouf, A. C., Singh, C., Chen, G. Z., Fray, D. J. and Windle, A. H., "Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole," Adv. Mater., 14, 382-385(2002). https://doi.org/10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
  9. Barthet, C., Hickey, A. J., Cairns, D. B. and Armes, S. P., "Synthesis of Novel Polymer-silica Colloidal Nanocomposites Via Free-radical Polymerization of Vinyl Monomers," Adv. Mater., 11, 408-410(1999). https://doi.org/10.1002/(SICI)1521-4095(199903)11:5<408::AID-ADMA408>3.0.CO;2-Y
  10. Petrovic, Z. S., Javni, I., Waddon, A. and Banhegyi, G., "Structure and Properties of Polyurethane-silica Nanocomposites," J. Appl. Polym. Sci., 76, 133-151(2000). https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  11. Kim, B. K., Seo, J. W. and Jeong, H. M., "Properties of Waterborne Polyurethane/nano Silica Composite," Macromol. Res., 11, 198-201(2003). https://doi.org/10.1007/BF03218353
  12. Chen, G., Zhou, S., Gu, G., Yang, H. and Wu, L., "Effects of Surface Properties of Colloidal Silica Particles on Redispersibility and Properties of Acrylic-based Polyurethane/silica Composites," J. Colloid Interface Sci., 281, 339-350(2005). https://doi.org/10.1016/j.jcis.2004.08.100
  13. Li, H., You, B., Gu, G., Wu, L. and Chen, G., "Particle Size and Morphology of Poly[styrene-co-(butyl acrylate)]/nano-silica Composite Latex," Polym. Int., 54, 191-197(2005). https://doi.org/10.1002/pi.1677
  14. Oliveira, F. C., Barros-Timmons, A. and Lopes-da-Silva, J. A., "Preparation and Characterization of Chitosan/$SiO_2 $ Composite Films," J. Nanosci. Nanotech., 10, 2816-2825(2010). https://doi.org/10.1166/jnn.2010.1442
  15. Palza, H., Vergara, R. and Zapata, P., "Improving the Thermal Behavior of Poly(propylene) by Addition of Spherical Silica Nanoparticles," Macromol. Mater. Eng., 295, 899-905(2010). https://doi.org/10.1002/mame.201000162
  16. Bliznyuk, V., Singamaneni, S., Kattumenu, R. and Atashbar, M., "Surface Electrical Conductivity in Ultrathin Single-wall Carbon Nanotube/polymer Nanocomposite Films," Appl. Phys. Lett., 88, 164101/164101-164103(2006). https://doi.org/10.1063/1.2193812
  17. Xiong, J., Zheng, Z., Qin, X., Li, M., Li, H. and Wang, X., "The Thermal and Mechanical Properties of a Polyurethane/multiwalled Carbon Nanotube Composite," Carbon, 44, 2701-2707 (2006). https://doi.org/10.1016/j.carbon.2006.04.005
  18. Ki, H. S., Yeum, J. H., Choe, S., Kim, J. H. and Cheong, I. W., "Fabrication of Transparent Conductive Carbon Nanotubes/polyurethane-urea Composite Films by Solvent Evaporation-induced Self-assembly(EISA)," Composite Sci. Tech., 69, 645-650(2009). https://doi.org/10.1016/j.compscitech.2008.12.012
  19. Wang, Z., Zhou, Y., Yao, Q. and Sun, Y., "Preparation, Characterization and Infrared Emissivity Study of Helical Polyurethane@ $SiO_2 $ Core-shell Composite," Appl. Surf. Sci., 256, 1404-1408(2009). https://doi.org/10.1016/j.apsusc.2009.08.096
  20. Zeng, Z., Yu, J. and Guo, Z., "Synthesis of Composite Nanoparticles Bearing Epoxy Functional Groups: Encapsulation of Silica by Emulsion Polymerization of GMA," J. Wuhan Univ. Technol., Mater. Sci. Ed., 21, 136-138(2006). https://doi.org/10.1007/BF02840860
  21. Park, S.-J. and Cho, K.-S., "Filler-elastomer Interactions: Influence of Silane Coupling Agent on Crosslink Density and Thermal Stability of Silica/rubber Composites," J. Colloid Interface Sci., 267, 86-91(2003). https://doi.org/10.1016/S0021-9797(03)00132-2
  22. Song, S. K., Kim, J.-H., Hwang, K.-S. and Ha, K., "Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 181-186(2011). https://doi.org/10.9713/kcer.2011.49.2.181
  23. Joseph, R., Zhang, S. and Ford, W. T., "Structure and Dynamics of a Colloidal Silica-poly(methyl methacrylate) Composite by $^{13}C$ and $^{29}Si$ MAS NMR Spectroscopy," Macromolecules, 29, 1305-1312(1996). https://doi.org/10.1021/ma951111z
  24. Nishiyama, N., Asakura, T. and Horie, K., "Condensation Behavior of a Silane Coupling Agent in the Presence of Colloidal Silica Studied by Silicon-29 and Carbon-13 NMR," J. Colloid Interface Sci., 124, 14-21(1988). https://doi.org/10.1016/0021-9797(88)90319-0
  25. Roberts, I. M., "Tungsten Coating: a Method of Improving Glass Microtome Knives for Cutting Ultra-thin Frozen Sections," J. Microscopy, 103, 113-119(1975). https://doi.org/10.1111/j.1365-2818.1975.tb04542.x

Cited by

  1. Studies on the Michael Addition Reaction between Secondary Amino Groups on the Silica Surface with Poly(ethylene glycol) Diacrylates vol.36, pp.6, 2012, https://doi.org/10.7317/pk.2012.36.6.822
  2. 불소계 변성 폴리우레아의 합성 및 오존저항 특성 vol.54, pp.2, 2012, https://doi.org/10.9713/kcer.2016.54.2.175
  3. 소수성 실리카의 제조 및 가스차단성 필름으로의 응용에 관한 연구 vol.28, pp.5, 2012, https://doi.org/10.14478/ace.2017.1072