DOI QR코드

DOI QR Code

Size Verification of Small and Large Bubbles in a Bubble Column

기포탑에서 작은기포와 큰기포의 크기 구별

  • Seo, Myung Jae (School of Chemical Engineering, Chungnam National University) ;
  • Jin, Hae-Ryong (School of Chemical Engineering, Chungnam National University) ;
  • Lim, Dae Ho (School of Chemical Engineering, Chungnam National University) ;
  • Lim, Ho (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering, Chungnam National University) ;
  • Jun, Ki-Won (Green Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 서명재 (충남대학교 화학공학과) ;
  • 진해룡 (충남대학교 화학공학과) ;
  • 임대호 (충남대학교 화학공학과) ;
  • 임호 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과) ;
  • 전기원 (한국화학연구원)
  • Received : 2011.08.26
  • Accepted : 2011.09.30
  • Published : 2012.04.01

Abstract

Size verification of small and large bubbles in a bubble column was investigated by employing the dynamic gas disengagement (DGD) method and dual electrical resistivity probe (DRP) method, simultancously. The holdups of large and small bubbles in the bubble column in a given operating condition were obtained by means of the DGD method by measuring the pressure drop variation in the column with a variation of time after stopping the gas input into the column. The size and frequency of bubbles were measured by the DRP method in the same operating condition, from which the bubble holdup of each range of size was obtained. The verification of size in determining the large or small bubbles was decided by comparing the holdups of large or small bubbles measured by the DGD method with that measured by the DRP method. Filtered compressed air and tap water were used as a gas and a continuous liquid medium. The diameter and height of the bubble column were 0.102 m and 1.5 m, respectively. The demarcation size between the large and the small bubbles in the bubble column was 4.0~5.0 mm; the demarcation size was about 5.0 mm when the gas velocity was in the relatively low range, but about 4.0 mm when the gas velocity was in the relatively high range, within this experimental conditions.

동력학적 기체유출방법(dynamic gas disengagement method)과 이중전기저항 탐침방법(dual electrical resistivity probe method)을 동시에 사용하여 기포탑에서 큰 기포와 작은 기포의 크기를 구별하였다. 기포탑의 일정한 운전조건에서 기포탑 내부에 체류하는 큰 기포와 작은 기포의 체류량은, 기포탑에 유입되는 기체의 유입을 차단한 후 시간의 흐름에 따른 기포탑 내부의 압력강하 변화를 측정하여 동력학적 기체유출방법에 의해 측정하였다. 기포의 크기와 빈도수는 동력학적 기체유출방법에 의해 큰 기포와 작은 기포의 체류량을 측정하는 동일한 운전조건에서 측정하였으며 이들 자료들로부터 기포의 크기에 따른 기포의 체류량을 결정하였다. 기포탑에서 큰 기포와 작은 기포의 크기결정은 동력학적 기체유출방법에 의해 얻은 큰 기포와 작은 기포의 체류량과 이중전기저항 탐침법에 의해 구한 크기의 범위를 아는 기포들의 체류량을 비교하여 결정하였다. 여과된 압축 공기와 물을 기체상과 연속액상을 사용하였으며, 기포탑의 직경은 0.102 m이고 높이는 1.5 m이었다. 기포탑에서 큰 기포와 작은 기포의 경계 크기는 4.0~5.0 mm 이었는데, 기체의 유속이 낮은 범위에서는 큰 기포와 작은 기포의 경계 크기가 5.0 mm 정도이었으나 기체의 유속이 상대적으로 큰 범위에서는 큰 기포와 작은 기포의 경계 크기가 4.0 mm 정도가 되었다.

Keywords

References

  1. Dechwer, W. D., Bubble Column Reactors, John Wiley and Sons Ltd.,(1992).
  2. Nigam, K. D. P. and Schumpe, A., Three-phase Spagered Reactors.
  3. Kim, S. D. and Kang, Y., "Hydrodynamics, Heat and Mass Transfer in Inverse and Circulating Three-Phase Fluidized-Bed Reactors for Waste Water Treatment," Studies Sur. Sci. Cat, 159, 103-108 (2006). https://doi.org/10.1016/S0167-2991(06)81545-4
  4. Kang, Y., Lee, K. I., Shin, I. S., Son, S. M., Kim, S. D. and Jung, H., "Characterisics of Hydrodynamics, Heat and Mass Transfer in Three-phase Inverse Fluidized Beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46, 451-464(2008).
  5. Krishna, R. and Sie, S. T., "Design and Scale-up of the Fischer-Tropsch Bubble Column Slurry Reactor," Fuel Process. Technol., 64, 73-105(2000). https://doi.org/10.1016/S0378-3820(99)00128-9
  6. Lim, D. H., Jang, J. H., Kang, Y. and Jun, K. W., "Axial and Radial Distributions of Bubble Holdup in a Slurry Bubble Column with Pilot Plant Scale," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 49, 200-205 (2011). https://doi.org/10.9713/kcer.2011.49.2.200
  7. Jin, H. R., Song, Y. H., Kang, Y., Jung, H. and Lee, H. T., "Holdup Characteristics of Small Bubbles in a Viscous Slurry Bubble Column," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 49, 83-88(2011). https://doi.org/10.9713/kcer.2011.49.1.083
  8. Behkish, A., Lemoine, R., Schabiaque, L., Qukaci, R. and Morsi, B. L., "Gas Holdup and Bubble Size Behavior in a Large-Scale Slurry Bubble Column Reactor Operating with on Organic Liquid under Elevated Pressure and Temperature," Chem. Eng. J., 128, 69-84(2007). https://doi.org/10.1016/j.cej.2006.10.016
  9. Chem, Z., Zheng, C. and Hofmann, H., "Local Bubble Behavior in Three-Phase Fluidized Beds," Can. J. Chem. Eng., 76, 315-318 (1998). https://doi.org/10.1002/cjce.5450760220
  10. Matsuura, A. and Fan, L. S., "Distribution of Bubble Properties in a Gas-Liquid-Solid Fluidized Bed," AIChE J., 30, 894-903 (1984). https://doi.org/10.1002/aic.690300604
  11. Saberi, S., Shakourzaduu, K., Bastoul, D. and Militzer, J., "Bubble size and Velocity Measurement in Gas-Liquid Systems: Application of fiber optic technique to Pilot Plant Scale," Can. J. Chem. Eng., 70, 253-257(1995).
  12. Wang, T., Wang, J., Yang, W. and Jin, Y., "Bubble Behavior in Gas-Liquid-Solid Three-phase Circulating Fluidized Beds," Chem. Eng. J., 84, 397-404(2001). https://doi.org/10.1016/S1385-8947(01)00129-2
  13. Zhang, L., Li, T., Ying, W. and Fang, D., "Rising and Decending Bubble Size Reactor," Chem. Eng. Res. Des., 86, 1143-1154(2008). https://doi.org/10.1016/j.cherd.2008.04.006
  14. De Swart, J. W. A., Van Vliet, R. E. and Krishina, R., "Size, Structure and Dynamics of Large Bubbles in a Two-Dimensional Slurry Bubble Column," Chem. Eng. Sci., 51, 4619-4629(1996). https://doi.org/10.1016/0009-2509(96)00265-5
  15. Krishna, R. and Van Bate, J. M., "Simulting the Motion of Gas Bubbles in a Liquid," Nature, 398, 208(1999). https://doi.org/10.1038/18353
  16. Krishna, R., Van Baten, J. M., Wrseanu, M. I. and Ellenkerger, J., "Design and Scale up of a Bubble Column Slurry Reactor for Fischer - Tropsch Synthesis," Chem. Eng. Sci., 56, 537-545(2001). https://doi.org/10.1016/S0009-2509(00)00258-X
  17. Son, S. M., Song, P. S., Lee, C. G., Kang. S. H., Kang, Y. and Kusakabe, K., "Bubbling Behavior in Gas-Liquid Countercurrent Bubble Column Bioreactors," J. Chem. Eng. Japan, 37, 990-998(2004). https://doi.org/10.1252/jcej.37.990
  18. Son, S. M., Kang, S. H., Kim, U. Y., Kang, Y. and Kim, S. D., "Axial Variation and Distribution of Bubble Properties in Gas/ Liquid Countercurrent Fluidized Beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 42, 235-240(2004).
  19. Son, S. M., Kang, S. H., Kim, U. Y., Kang, Y. and Kim, S. D., "Bubble Properties in Three-Phase Inverse Fluidized Beds with Viscous Liquid Medium," Chem. Eng. Processing, 46, 763-741(2007).
  20. Shin, K. S., Song, P. S., Lee, C. G., Kang, S. H., Kang, Y., Kim, S. D. and Kim, S. J., "Heat Transfer Coefficient in Viscous Liquid-Solid Circulation Fluidized Beds," AIChE J., 51, 671-677(2005). https://doi.org/10.1002/aic.10291
  21. Cho, Y. J., Song, P. S., Kim, S. H., Kang, Y. and Kim, S. D., "Stochastic Analysis of Gas-Liquid-Solid Flow in Three-Phase Circulating Fluidized Beds," J. Chem. Eng. Japan, 34, 254-261(2001). https://doi.org/10.1252/jcej.34.254