DOI QR코드

DOI QR Code

Energy Consumption of Biodiesel Production Process by Supercritical and Immobilized Lipase Method

초임계와 Lipase 고정화에 의한 바이오디젤 생산 공정의 에너지소비량

  • Min, Eung-Jae (Department of Chemical Engineering, Dongguk University) ;
  • Lee, Euy-Soo (Department of Chemical Engineering, Dongguk University)
  • 민응재 (동국대학교 화공생물공학과) ;
  • 이의수 (동국대학교 화공생물공학과)
  • Received : 2011.03.29
  • Accepted : 2012.01.03
  • Published : 2012.04.01

Abstract

Biodiesel is a renewable energy which is nontoxic and acting as a replacement for conventional diesel which derived from fossil fuel. Classified biodiesel producing way such as acid, base, supercritical and enzyme methods, this study focused on eco-friendly production of biodiesel using supercritical and immobilized enzyme process. Assuming a plant with a production rate of 10,000 tons a year, a PRO II simulator program was used to simulate the product conversion rate and total energy consumption. The product conversion in supercritical process and immobilized enzyme was found to be 91.17% (including 0.9% glycerol) and 93.18% (including 1.0% glycerol) respectively. The result shows that the efficiency of immobilized enzyme process is higher compared to supercritical process but having lower end product purity. From the energy consumption point of view, supercritical process consume about 8.9 MW while immobilized enzyme process consume much lower energy which is 3.9 MW. Consequently, this study certifies that energy consumption of supercritical process is 2.3 times higher than immobilized enzyme process.

바이오디젤은 화석연료인 경유의 대체에너지로써 비독성이고 재생 가능한 에너지이다. 바이오디젤생산방법은 크게 산 염기 초임계 효소방법으로 분류되는데 본 연구에서 친환경적으로 바이오디젤을 생산할 수 있는 초임계공정과 효소고정화공정에 대해 연구하였다. 연간 10,000톤의 바이오디젤을 생산하는 공정을 대상으로 PRO II 공정모사기를 통해 전환률과 에너지소비량을 알아보기 위한 공정모사를 실시하였다. 그 결과 초임계공정에서의 전환률은 91.17%(0.9% 글리세롤 포함), 효소고정화공정에서는 93.58%(1.0% 글리세롤 포함)로 나타났다. 이 결과는 효소고정화공정이 높은 전환률을 보였지만 바이오디젤의 순도는 초임계공정에서 높게 나타났음을 보여준다. 한편, 에너지소비량 측면에서 초임계공정과 효소고정화공정이 각각 8.9, 3.9MW를 나타났다. 즉, 초임계 공정이 효소고정화공정에 비하여 2.3배 많은 에너지를 소모한다는 것을 확인할 수 있었다.

Keywords

References

  1. Fangrui, M., Milford, A. and Hanna, "Biodiesel Production: a Review," Bioresour. Technol., 70, 1-15(1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  2. Ruan, C. J., Li, H., Guo, Y. Q., Qin, P., Gallagher, J. L., Seliskar, D. M., Lutts, S. and Mahy, G., "Kosteletzkya Virginica, An Agroecoengineering Halophytic Species for Alternative Agricultural Production in China's East Coast: Ecological Adaptation And Benefits, Seed Yield, Oil Content, Fatty Acid and Biodiesel Properties," Ecol. Eng., 32, 320-328(2008). https://doi.org/10.1016/j.ecoleng.2007.12.010
  3. Kulkarni, M. G., Dalai, A. K. and Bakhshi, N. N., "Transesterification of Canola Oil in Mixed Methanol/ethanol System and Use of Esters as Lubricative Additive," Bioresour. Technol., 98, 2027-2033(2007). https://doi.org/10.1016/j.biortech.2006.08.025
  4. Knothe, G., "Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters," Fuel Process. Technol., 86, 1059-1070(2005). https://doi.org/10.1016/j.fuproc.2004.11.002
  5. Gryglewicz, S., "Rapeseed Oil Methyl Esters Preparation Using Heterogeneous Catalysts," Bioresour. Technol., 70, 249-253(1999). https://doi.org/10.1016/S0960-8524(99)00042-5
  6. Furuta, S., Matsuhashi, H. and Arata, K., "Biodiesel Fuel Production with Solid Superacid Catalysis in Fixed Bed Reactor Under Atmospheric Pressure," Catal. Commun., 5, 721-723(2004). https://doi.org/10.1016/j.catcom.2004.09.001
  7. Ma, F., Clements, L. D. and Hanna, M. A., "The Effects of Catalyst, Free Fatty Acids, and Water on Transesterification of Beef Tallow," Trans. ASAE., 41, 1261-1264(1998). https://doi.org/10.13031/2013.17292
  8. Kusdiana, D. and Saka, S., "Effects of Water on Biodiesel Fuel Production by Supercritical Methanol Treatment," Bioresour. Technol., 91, 289-295(2004). https://doi.org/10.1016/S0960-8524(03)00201-3
  9. Alex, H. W., Dusko Posarac and Naoko Ellis, "Assessment of Four Biodiesel Production Processes Using HYSIS. Plant," Bioresour. Technol., 99, 6587-6601(2008). https://doi.org/10.1016/j.biortech.2007.11.046
  10. Eiji Minami and Shiro Saka, "Kinetics of Hydrolysis and Methyl Esterification for Biodiesel Production in Two-step Supercritical Methanol Process," Fuel, 85, 2479-2483(2006). https://doi.org/10.1016/j.fuel.2006.04.017
  11. Zhang, Y., Dube, M. A., McLean, D. D. and Kates, M., "Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment," Bioresour. Technol., 89, 1-16(2003). https://doi.org/10.1016/S0960-8524(03)00040-3
  12. Zhang, Y., Dube, M. A., McLean, D. D. and Kates, M., "Biodiesel Production from Waste Cooking Oil: 2. Economic Assessment and Sensitivity Analysis," Bioresour. Technol., 90, 229-240(2003). https://doi.org/10.1016/S0960-8524(03)00150-0
  13. Boyi Fu and Palligarnai T. Vasudevan, "Effect of Solvent Co-solvent Mixtures on Lipase-Catalyzed Transesterification of Canola Oil," Energy Fuels., 24, 4646-4651(2010). https://doi.org/10.1021/ef901176h
  14. Akhil Bajaj, Purva Lohan, Prabhat, N. J. and Rajesh Mehrotra, "Biodiesel Production Through Lipase Catalyzed Transesterification: An Overview," Enzymatic., 62, 9-14(2010). https://doi.org/10.1016/j.molcatb.2009.09.018
  15. James, M. D., Conceptual Design of Chemical Processes, International ed., McGraw-Hill, New York, NY(1988).
  16. Barniki, S. D. and Fair, J. R., "Separation system Synthesis: A Knowledge-based Appache. 1. Liquid Mixture Separations," Ind. Eng. Chem. Res., 29(31), 1679-1694(1992).
  17. Hidetoshi Kuramochi, Kouji Maeda, Satoru Kato, Masahiro Osako, Kazuo Nakamura and Shin-ichi Sakai, "Application of UNIFAC Models for Prediction of Vapor-liquid and Liquid-liquid Equilibria Relevant to Separation and Purification Processes of Crude Biodiesel Fuel," Fuel., 88, 1472-1477(2009). https://doi.org/10.1016/j.fuel.2009.01.017
  18. Shieh, C. J., Liao, H. F. and Lee, C. C., "Optimization of Lipase Catalyzed Biodiesel by Response Surface Methodology," Bioresour. Technol., 88, 103-106(2003). https://doi.org/10.1016/S0960-8524(02)00292-4

Cited by

  1. Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation vol.51, pp.4, 2013, https://doi.org/10.9713/kcer.2013.51.4.487
  2. Recent Developments and Prospects in the Enzymatic Acylations vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.716