DOI QR코드

DOI QR Code

수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질

Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes

  • 박수근 (부산대학교 화공생명공학부) ;
  • 김광만 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 정용주 (한국기술교육대학교 응용화학공학과) ;
  • 김석 (부산대학교 화공생명공학부)
  • Park, Sukeun (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 투고 : 2011.08.17
  • 심사 : 2011.10.18
  • 발행 : 2012.02.01

초록

본 연구는 커패시터 전극 응용을 위한 복합체 전극에 관련된 것으로 PANI와 PANI/$TiO_2$로 구성된 수퍼커패시터 전극을 제조하여 cyclic voltammetry(CV)를 이용하여 6 M KOH 수용액에서 축전량(capacitance) 특성을 조사하였다. PANI/$TiO_2$ 복합체는 간단한 in-situ 방법을 통해 다양한 비율로 합성되었다. PANI/$TiO_2$ 복합체의 형태학(morphology)적 특징을 파악하기 위해서 주사전자현미경(SEM)과 투과전자현미경(TEM)을 통해 분석하였고, X선 회절 분석기(XRD)를 이용하여 복합체의 결정화도와 담지된 $TiO_2$의 입자크기를 확인하였다. 전기화학적 시험 결과, 아닐린 대비 $TiO_2$의 주입량이 10 wt%일 때 가장 우수한 축전량(626 $Fg^{-1}$)을 나타냈고 높은 주사속도인 100 $mVs^{-1}$에서 286 $Fg^{-1}$의 비축전량을 나타내었다. 이는 폴리아닐린(PANI) 매트릭스(matrix)에 균일하게 담지된 $TiO_2$(~6.5 nm)가 효과적인 연결 구조를 형성하여 전하이동현상이 증가하고, 축전이 가능한 반응면적이 증가한 것과 관련있다고 판단된다.

In this study, PANI and PANI/$TiO_2$ composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/$TiO_2$ composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and $TiO_2$ particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% $TiO_2$ content against aniline units showed the highest specific capacitance (626 $Fg^{-1}$) and delivered a capacitance of 286 $Fg^{-1}$ reversibly at a 100 $mVs^{-1}$ rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized $TiO_2$ particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of $TiO_2$ itself.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부

참고문헌

  1. Morimoto, T., Hiratsuka, K., Sanada, Y. and Kurihara, K., "Elec-tric Double Layer Capacitor Using Organic Electrolyte," J. Power Sources, 60(2), 239-247(1996). https://doi.org/10.1016/S0378-7753(96)80017-6
  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and Schalkwijk, W. V., "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nat. Mater., 4, 366-377(2005). https://doi.org/10.1038/nmat1368
  3. Frackowiak, E., "Carbon Materials for Supercapacitor Application," Phys. Chem. Chem. Phys. 9, 1774-1785(2007). https://doi.org/10.1039/b618139m
  4. Wang, S., Jiang, S. P. and Wang, X., "Microwave-assisted Onepot Synthesis of Metal/metal Oxide Nanoparticles on Graphene And Their Electrochemical Applications," Electrochimica Acta, 56, 3338-3334(2011). https://doi.org/10.1016/j.electacta.2011.01.016
  5. Zhu, Murali, S., Stoller, M. D., Velamakanni, A., Piner, R. D. and Ruoff, R. S., "Microwave Assisted Exfoliation and Reduction of Graphite Oxide for Ultracapacitors," Carbon 48, 2118(2010). https://doi.org/10.1016/j.carbon.2010.02.001
  6. Snook, G. A., Kao, P. and Best, A. S., "Conducting-polymer-Based Supercapacitor Devices and Electrodes," J. Power Source, 196, 1-12(2011). https://doi.org/10.1016/j.jpowsour.2010.06.084
  7. Chellachamy, A., Amarnath, Chang, J. H., Kim, D. Y., Rajaram, S., Mane, Han, S. H. and Sohn, D. W., "Electrochemical Supercapacitor Application of Electroless Surface Polymerization of Polyaniline Nanostructures," Mater. Chem. Phys., 113, 14-17(2009). https://doi.org/10.1016/j.matchemphys.2008.08.068
  8. Guan, H., Fan, L., H. Zhang, H. C. and Qu, X., "Polyaniline Nanofibers Obtained by Interfacial Polymerization for High-rate Supercapacitors," Electrochimica Acta, 56, 964-968(2010). https://doi.org/10.1016/j.electacta.2010.09.078
  9. Liu, J., Zhou, M., Fan, L. Li, P. and Qu, X., "Oorous Polyaniline Exhibits Highly Enhanced Electrochemical Capacitance Performance," Electrochimica Acta, 55, 5819-582(2010). https://doi.org/10.1016/j.electacta.2010.05.030
  10. Li, G., Zhang, C., Li, Y., Peng, H. and Chen, K., "Rapid Polymerization Initiated by Redox Initiator for the Synthesis of Polyaniline Nanofibers," Polymer, 51, 1934-1939(2010). https://doi.org/10.1016/j.polymer.2010.03.004
  11. Lokhande, C. D., Dubal, D. P., Oh, Shim, J., "Metal Oxide Thin Film Based Supercapacitors," Curr. Appl. Phys., 11, 255-270(2011). https://doi.org/10.1016/j.cap.2010.12.001
  12. Chepuri, R. K., Rao, M., Vijayan., "Ruthenium(II)-mediated Synthesis of Conducting Polyaniline (PAni): A Novel Route for PAni-$RuO_2$ Composite," Synthetic Metals, 158, 516-519(2008). https://doi.org/10.1016/j.synthmet.2008.03.015
  13. Yuan, C., Su, L., Gao, B. and Zhang, X., "Enhanced Electrochemical Stability and Charge Storage of $MnO_2$/Carbon Nanotubes Composite Modified by Polyaniline Coating Layer in Acidic Electrolytes," Electrochimica Acta, 54, 7039-7047(2008).
  14. Panic, V. V., Dekanski, A. B. and Stevanovic, S. M., "Enhanced Electrochemical Stability and Charge Storage of $MnO_2$/Carbon Nanotubes Composite Modified by Polyaniline Coating Layer in Acidic Electrolytes," J. Power Sources, 195, 3969-3976(2010). https://doi.org/10.1016/j.jpowsour.2010.01.028
  15. Hu, Z. A., Xie, Y. L., Wang, Y. X., Mo, L. O., Yang, Y. Y. and Zhang, Z. Y., "Polyaniline/$SnO_2$ Nanocomposite for Supercapacitor Applications," Mater. Chem. Phys., 114, 990-995(2009). https://doi.org/10.1016/j.matchemphys.2008.11.005
  16. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X. and Zhang, L., "Progress of Electrochemical Capacitor Electrode Materials: A Review," Int. J. Hydrog. Energy, 34, 4889-4899(2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  17. Wang, D. H., Kou, R., Choi, D. W., Yang, Z., Nie, Z., Li, J., Saraf, L. V., Hu, D., Zhang, J., Graff, G. L., Liu, J. and Pope, M. Askay., "Ternary Self-assembly of Ordered Metal Oxide Grapheme Nanocomposite for Electrochemical Energe Storage," ACS Nano, 23, 1587-1595(2010).
  18. Wang, D. W., Li, F., Zhao, J., Ren, W., Chen, Z. G, Tan, J., Wu, Z. S., Gentle, L., Lu, G. Q. and Cheng, H. M, "Electrochemical Interfacial Capacitance in Multilayer Graphene Sheets: Dependence on Number of Stacking Layers," ACS Nano, 3, 1745-1752 (2009). https://doi.org/10.1021/nn900297m
  19. Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N. and Qin, L. C., "Graphene and Nanostructured $MnO_2$ Composite Electrodes for Supercapacitors," Carbon, 49, 2917-2925(2011). https://doi.org/10.1016/j.carbon.2011.02.068
  20. Kim, K. S. and Park, S. J., "Synthesis of Carbon-coated Graphene Electrodes and Their Electrochemical Performance," Electrochimica Acta, 56, 6547-6553(2011). https://doi.org/10.1016/j.electacta.2011.04.092
  21. Ko, J. M., Ryu, K. S., Kim, S. and Kim, K. M., "Supercapacitive Properties of Composite Electrodes Consisting of Polyaniline, Carbon Nanotube, and $RuO_2$," J. Appl. Electrochem., 39, 1331-1337(2009). https://doi.org/10.1007/s10800-009-9800-y
  22. Lai, C., Zhang, H. Z., Li, G. R. and Gao, X. P., "Mesoporous Polyaniline/$TiO_2$ Microspheres with Core-shell Structure as Anode Materials for Lithium ion Battery," J. Power Sources, 196, 4735-4740(2011). https://doi.org/10.1016/j.jpowsour.2011.01.077
  23. Da, D., Kim, M. G., Lee, J. Y. and Cho, J. P., "Green Energy Storage Materials: Nanostructured $TiO_2$ and Sn-based Anodes for Lithium-ion Batteries," Energy Environ. Sci, 2, 818-837(2009). https://doi.org/10.1039/b823474d
  24. Chen, X. and Mao, S. S., "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chem. Rev. 107, 2891-2959(2007). https://doi.org/10.1021/cr0500535
  25. Zhao, Y., Zhan, L., Tian, J., Nie, S. and Ning, Z., "Enhanced Electrocatalytic Oxidation of Methanol on Pd/polypyrrole-Graphene in Alkaline Medium," Electrochimica Acta, 56, 1967-1972(2011). https://doi.org/10.1016/j.electacta.2010.12.005
  26. Stoller, M. D., Park, S. J., Y. Zhu, Ahn, J. H. and Ruoff, R. S., "Graphene-Based Ultracapacitors," Nano Lett., 8, 3498-3502(2008). https://doi.org/10.1021/nl802558y
  27. Yan, J., Wei, T., Qiao, W., Shao, B., Zhao, Q., Zhang, L. and Fan, Z., "Rapid Microwave-assisted Synthesis of Graphene Nanosheet/$Co_3O_4$ Composite for Supercapacitors," Electrochimica Acta, 55, 6973-6978(2010). https://doi.org/10.1016/j.electacta.2010.06.081