DOI QR코드

DOI QR Code

Performance Analysis of Tradeoff between Energy Consumption and Activation Delay in UMTS State Transition Mechanism

UMTS 상태 천이 방식에서 에너지 소비와 활성 지연간의 트레이드오프 성능 분석

  • 최현호 (국립한경대학교 전기전자제어공학과)
  • Received : 2012.09.21
  • Accepted : 2012.11.26
  • Published : 2012.12.28

Abstract

Mobile communication systems define user state transition mechanisms in order to manage radio resources and battery power efficiently. In the state transition mechanism, a state with a higher energy consumption inherently offers a shorter access delay, so there is a tradeoff between the energy and delay performances. In this paper, we analyze the user state transition mechanism of UMTS by considering the bursty traffic attributes of mobile applications. We perform a numerical evaluation for both the energy consumption and the activation delay by Markov modeling of the state transition mechanism, and investigate their tradeoff relationship as functions of operational parameters. The resulting energy-delay tradeoff curves clearly show an achievable performance bound of the user state transition mechanism and also offer an optimal operation strategy to minimize the energy consumption while guaranteeing the delay requirement.

이동통신 시스템은 무선 자원과 배터리 전력을 효율적으로 관리하기 위해 사용자 상태 천이 방식을 정의하고 있다. 이러한 상태 천이 방식에서는 에너지 소비가 많은 상태가 기본적으로 짧은 접속 지연을 제공하므로 에너지와 지연 성능 사이에 트레이드오프 관계가 존재한다. 본 논문에서는 이동 응용 서비스의 트래픽 속성을 고려하여 UMTS 시스템의 사용자 상태 천이 방식을 분석한다. 상태 천이 방식의 마르코프 모델링을 통하여 에너지 소비량과 활성 지연을 수학적으로 도출하고 운용 파라미터에 따라 이들의 트레이드오프 관계를 파악한다. 분석 결과로 도출된 에너지-지연 트레이드오프 곡선은 주어진 상태 천이 방식이 달성 가능한 성능 한계를 보여주며 지연 요구사항을 보장하면서 에너지 소비를 최소화하는 최적 운용 전략을 제시한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Network Efficiency Task Force Fast Dormancy Best Practices, GSM Association, v1.0, May 2010, from : http://www.gsma.com.
  2. 3GPP TS 25.331 (6.2.0), Radio Resource Control (RRC) protocol specification, Dec. 2008.
  3. J. H. Lee, K. Hur, and D. S. Eom, "A enhanced theory for reducing energy consumption and end-to-end delay in stationary wireless sensor network," J. KICS, vol. 35, no. 10, pp. 949-959, Oct. 2010.
  4. Z. Youzhi, P. Tingrui, W. Yalan, and G. Dezhi, "On modeling of WWW wireless traffic in UMTS," in Proc. Chinese Control Conference, pp. 553-556, Zhangjiajie, Sep. 2007.
  5. J. R. Lee and D. H. Cho, "Performance evaluation of energy saving mechanism based on probabilistic sleep interval decision in IEEE 802.16e," IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1773-1780, Jul. 2007. https://doi.org/10.1109/TVT.2007.897232
  6. M. Sarkar and R. L. Cruz, "Analysis of power management for energy and delay trade-off in a WLAN," in Proc. Conf. Inform. Sci. Systems, Princeton, New Jersey, Mar. 2004.
  7. D. T. T. Nga, M. G. Kim, and M. Kang, "Delay-guaranteed energy saving algorithm for the delay-sensitive applications in IEEE 802.16e systems," IEEE Trans. Consum. Electr., vol. 53, no. 4, pp. 1339-1347, Nov. 2007. https://doi.org/10.1109/TCE.2007.4429222
  8. J. Y. Choi, "Power saving mechanism for advanced mobile station in IEEE 802.16m," J. KICS, vol. 36, no. 12, pp. 959-965, Dec. 2011. https://doi.org/10.7840/KICS.2011.36A.12.959
  9. S. B. Jang and Y. G. Kim, "Power saving and delay reduction for supporting WLAN-based fixed-mobile convergence service in smartphone," IEEE Trans. Consum. Electr., vol. 56, no. 4, pp. 2747-2755, Nov. 2010. https://doi.org/10.1109/TCE.2010.5681165
  10. H. H. Choi, J. R. Lee, and D. H. Cho, "On the use of a power-saving mode for mobile VoIP devices and its performance evaluation," IEEE Trans. Consum. Electr., vol. 55, no, 3, pp. 1537-1545, Aug. 2009. https://doi.org/10.1109/TCE.2009.5278024
  11. C. F. Chiasserini and R. R. Rao, "Improving energy saving in wireless systems by using dynamic power management," IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 1090-1100, Sep. 2003. https://doi.org/10.1109/TWC.2003.817445
  12. M. R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J. Neely, "Energy-delay tradeoffs in smartphone applications," in Proc. Conf. Mobile Systems, Appl., and Services (MobiSys), pp. 255-270, San Francisco, Jun. 2010.
  13. Y. W. Chung, D. K. Sung, and A. H. Aghvami, "Steady state analysis of user equipment state transitions for universal mobile telecommunication systems," in Proc. IEEE PIMRC, pp. 2034-2038, Lisbon Portugal, Sep. 2002.
  14. J. H. Yeh, C. C. Lee, J. C. Chen, "Performance analysis of energy consumption in 3GPP networks," in Proc. IEEE Wireless Telecom Symposium, pp. 67-72, Pomona, CA, May 2004.
  15. H. Holma and A. Toskala, WCDMA for UMTS, John Wiley & Sons Ltd., pp. 136-137, 2000.
  16. IEEE 802.16m-08/004r5, IEEE 802.16m Evaluation Methodology Document (EMD), Jan. 2009.
  17. P. H. J. Perala, A. Barbuzzi, G. Boggia, and K. Pentikousis, "Theory and practice of RRC state transitions in UMTS networks," in Proc. IEEE Globecom, Nov. 2009.