DOI QR코드

DOI QR Code

Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology Application in Algeria

  • Song, Dong-Seob (Department of Ocean Construction Engineering, Kangwon National University) ;
  • Boutiouta, Seddik (Department of Radio Communication, Institute of Telecommunications, University of Oran)
  • Received : 2012.10.25
  • Accepted : 2012.11.30
  • Published : 2012.12.31

Abstract

Since the accuracy of precipitable/integrated water vapor estimates from GNSS measurements is proportional to the accuracy of water vapor Weighted Mean Temperature Model (WMTM), the WMTM is a significant formulation in the retrieval of precipitable water vapor from zenith wet delay of GNSS signal. The purpose of this paper is to develop available the WMTM to apply for GNSS meteorology in the region of Algeria, by using the Algerian radiosonde network in the World Meteorological Organization (WMO). It can be concluded that the available GNSS precipitable water vapor which is retrieved by the developed Algerian Weighted Mean Temperature Equation (AWMTE) can be useful technique for sensing of water vapor in the Algeria, after Algerian Continuously Operating Reference System (CORS) will be constructed.

Keywords

Acknowledgement

Supported by : Kangwon National University

References

  1. Anzidei, M., G. Casula, A. Galvani, A. Pesci, E. Serpelloni, P. Baldi, S. Touam, and S. Kahlouche (2003), Data analysis of the first epoch GPS Algerian regional network, Boll. Geo. Sci. Affini, Vol. 62, No. 3, pp. 179-192.
  2. Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS Meteorology : Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., Vol. 97, No. 15, pp. 787-801.
  3. Bevis, M., ST. Businger, ST. Chriswell (1994), GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp. 379-386. https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
  4. Boutiouta, S., and A. H. Belbachir (2006), Magnetic Storms Effects on the Ionosphere TEC through GPS data, Information Technology Journal, Vol, 5, No. 5, pp. 908-915. https://doi.org/10.3923/itj.2006.908.915
  5. Cao, Y., F. Zheng, Y. Xie, and Y. Bi (2008), Impact of the Weighted Mean Temperature on the Estimation of GPS Precipitable Water Vapor, Microwave and Millimeter Wave Technology, International ICMMT2008 Proceedings, 2, pp. 799-801.
  6. Daho, S. A. B., and J. D. Fairhead (2007), Accuracy assessment of the available geoid models in Algeria, Computers and Geosciences, Vol. 33, pp. 76-82. https://doi.org/10.1016/j.cageo.2006.05.009
  7. Davis, J. L., T. A. Herring, I. I. Sharpiro, A. E. E. rogers, and G. elgered (1985), Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length, Radio Science, Vol. 20, No 6, pp. 1593-1607. https://doi.org/10.1029/RS020i006p01593
  8. Dekkiche, H., S. Kahlouche, C. B. Kadri, and R. Mir (2008), Ionospheric Modelling in the North of Algeria, International Association of Geodesy Symposia, Vol. 133, pp. 679-689. https://doi.org/10.1007/978-3-540-85426-5_78
  9. Frank, P. (1953), Rejection of Outlying Observations, American Journal of Physics, Vol. 21, No. 7, pp. 520-525. https://doi.org/10.1119/1.1933535
  10. Feng, Y., Z. Bai, P. Fang, and A. Williams (2001), GPS Water Vapour Experimental Results From Observations of the Australian Regional GPS Network (ARGN), A Spatial Odyssey : 42nd Australian Surveyors Congress.
  11. Liou, Y. A., Y. T. Teng (2001), Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes, Journal of Applied Meteorology, Vol. 40, pp. 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
  12. Logan, W. R. (1955), The Reject ion of Outlying Observations, Survey Review, Vol. 13, No. 97, pp. 133-137. https://doi.org/10.1179/003962655792063179
  13. Mendes, V.B. (1999), Modeling the Neutral-atmosphere Propagation Delay in Radiometric Space Techniques, Ph.D. dissertation, Technical Report No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada.
  14. Mockler, S. B. (1995), Water vapor in the climate system, special report, AGU, Washington, D. C., Dec.
  15. Raju, C. S., K. Saha, B. V. Thampi, and K. Parameswaran (2007), Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements, Ann. Geophys., Vol. 25, pp. 1935-1948. https://doi.org/10.5194/angeo-25-1935-2007
  16. Ross, R. J., and S. Rosenfeld (1997), Estimating mean weighted temperature of the atmosphere for Global Positioning System applications, J. Geophys. Res., Vol. 102, No. D18, pp. 21,719-21,730. https://doi.org/10.1029/97JD01808
  17. Ross, R. J., and W. P. Elliott (1996), Tropospheric precipitable water: A radiosonde-based climatology, NOAA Tech. Memo. ERL ARL-219, 132 pp., Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
  18. Schuler, T. (2001), On Ground-Based GPS Tropospheric Delay Estimation, Doctor's Thesis, Studiengang Geodsie und Geoinformation, Universitt der Bundeswehr Munchen (University FAF Munich), Germany.
  19. Smith, E. K. and S. Weintraub (1953), The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of IEEE, Vol. 41, pp. 1035-1037.
  20. Solbrig, P. (2000), Untersuchungen ber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, (In German).
  21. Song, D.S. and D. A. Grejner-Brzezinska (2009), Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event, Earth, Planets and Space, Vol. 61, No. 10, pp. 1117-1125. https://doi.org/10.1186/BF03352964
  22. Thayer, D. (1974), An Improved Equation for the Radio Refractive Index of Air, Radio Science, Vol. 9, pp. 803-807. https://doi.org/10.1029/RS009i010p00803
  23. UNECA (United Nations Economic Commission for Africa) (2008), African Geodetic Reference Frame (AFREF), Newsletter, May.
  24. Wang, J., L. Zhang, and A. Dai (2005), Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications, J. Geophys. Res., Vol. 110, No. D21101, doi:10.1029/20005JD006215.
  25. Yelles, K., K. Lammali, A. Mahsas, E. Calais, P. Briole (2004), Coseismic deformation of the May 21st, 2003, Mw= 6.8 Boumerdes earthquake, Algeria, from GPS measurements, Geophys. Res. Lett., Vol. 31, pp. 1-4.
  26. Yuan, L. L., R. A. Anthes, R. H. Ware, C. Rocken, W. D. Bonner, M. G. Bevis, and S. Businger (1993), Sensing Climate Change Using the Global Positioning System, J. Geophys. Res., Vol. 98, No. D8, pp. 14,925-14,937. https://doi.org/10.1029/93JD00948

Cited by

  1. Seasonal Multifactor Modelling of Weighted-Mean Temperature for Ground-Based GNSS Meteorology in Hunan, China vol.2017, pp.1687-9317, 2017, https://doi.org/10.1155/2017/3782687