Abstract
The stagnant growth in 3D market due to 3D movie contents shortage is encouraging development of techniques for production cost reduction. Elimination of vertical disparity generated during image acquisition requires heaviest time and effort in the whole stereoscopic film-making process. This matter is directly related to competitiveness in the market and is being dealt with as a very important task. The removal of vertical disparity, i.e. image rectification has been treated for a long time in the photogrammetry field. While computer vision methods are focused on fast processing and automation, photogrammetry methods on accuracy and precision. However, photogrammetric approaches have not been tried for the 3D film-making. In this paper, proposed is a photogrammetry-based rectification algorithm that enable to eliminate the vertical disparity precisely by reconstruction of geometric relationship at the time of shooting. Evaluation of proposed algorithm was carried out by comparing the performance with two existing computer vision algorithms. The epipolar constraint satisfaction, epipolar line accuracy and vertical disparity of result images were tested. As a result, the proposed algorithm showed excellent performance than the other algorithms in term of accuracy and precision, and also revealed robustness about position error of tie-points.
3D 입체영상 콘텐츠 부족현상에 따른 3D 산업시장의 성장정체는 콘텐츠 제작비용 절감을 위한 관련기술 개발의 촉진을 야기하고 있다. 3D 입체영상 제작에서 가장 많은 시간과 노력을 요구하는 부분은 촬영 과정에서 발생된 수직시차의 제거라 할 수 있으며, 이는 시장 경쟁력과 직접적으로 관계되는 사안이라 매우 중요한 작업으로 다루어지고 있다. 비 정렬된 스테레오 영상의 수직시차 보정 즉, 편위수정(Rectification)은 사진측량분야에서 오랫동안 다루어 오던 문제로 컴퓨터 비전방식이 빠른 처리속도와 자동화에 초점이 맞추어져 있다면, 사진측량방식에서는 정확도와 정밀도 확보에 목적을 두고 있다. 허나 입체영화 제작에 있어 사진측량학적 관점으로 문제를 해결하려 한 시도는 그 사례를 찾아보기가 매우 힘들다. 이에 본 논문에서는 사진측량방식의 기술을 도입하여 촬영 당시의 기하학적 관계를 복원하고 이를 통해 수직시차를 제거할 수 있는 정밀 편위수정 알고리즘을 제안하고자한다 알고리즘의 성능평가는 기존 컴퓨터비전 알고리즘 두 가지와 성능비교를 통해 수행되었으며, 에피폴라 제약조건 만족도와 에피폴라 라인의 추정정확도, 그리고 정합점 간의 수직시차 측정을 통한 에피폴라 리샘플링의 정확도 등이 분석되었다. 실험결과, 제안 알고리즘은 정확도 및 정밀도 측면에서 비교 알고리즘들 보다 우수한 성능을 나타내었으며, 정합점 위치오차에 대해서도 강인함을 보여주었다.