International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 1, March 2012, pp. 29-35
http://dx.doi.org/10.5391/IJF1S.2012.12.1.29 pISSN 1598-2645 eISSN 2093-744X

Adaptive Control of Strong Mutation Rate and Probability for Queen-bee
Genetic Algorithms

Sung Hoon Jung*

Department of Information and Communications Engineering,
Hansung University, Seoul 136-792, Korea

Abstract

This paper introduces an adaptive control method of strong mutation rate and probability for queen-bee genetic algorithms.
Although the queen-bee genetic algorithms have shown good performances, it had a critical problem that the strong
mutation rate and probability should be selected by a trial and error method empirically. In order to solve this problem,
we employed the measure of convergence and used it as a control parameter of those. Experimental results with four
function optimization problems showed that our method was similar to or sometimes superior to the best result of empirical
selections. This indicates that our method is very useful to practical optimization problems because it does not need time

consuming trials.
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1. Introduction

Genetic Algorithms(GAs) have been successfully ap-
plied to many optimization problems to date [1-9]. Re-
cently GAs have been used for multiobjective optimiza-
tion problems as a new application area [10-12]. However,
GAs sometimes showed poor performances in the complex
multi-modal problems because individuals could easily fall
into the local optimum areas and it was difficult to get out
of the areas [6, 13—15]. In order to solve this problem and to
improve the performances of GAs, we introduced a queen-
bee evolution method [16]. Although it showed very good
performances than existing methods, it had a critical prob-
lem that the strong mutation rate and probability of the
method should be selected by a trial and error method em-
pirically. This empirical selection is a quite annoying and
time-consuming task because the parameters are selected
through a lot of experiments. Since the strong mutation rate
and probability are the major factor of the performances of
queen-bee GAs, we should carefully devise a new algo-
rithm to solve this problem.

In this paper, we propose an adaptive control method
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of the strong mutation rate and probability by employing a
measure of convergence. If the measure of convergence in-
dicates a converged state (in other words, most individuals
fall into local optimum areas), then the strong mutation rate
and probability should be increased in order to enforce ex-
ploration. Otherwise, they should be decreased. The mea-
sure of convergence should be carefully devised for good
performances of our method. First, we used the change
of average fitness of individuals from the previous genera-
tion. That is, if the average fitness of current generation is
less than or equal to that of previous generation, then we
regard as a converged state. Second, we took the failed ra-
tio of evolution of individuals. That is, a specific percent
of whole offsprings are failed to evolve from their parents,
we also regard it as a converged state. From this control
of the strong mutation rate and probability, the individuals
fallen into local optimum areas have more chances to es-
cape the local optimum areas and to approach to the global
optimum.

We applied our method to four function optimization
problems in order to measure the performances of our
method. Experimental results showed that our method was
considerably practical in that it produced considerably sim-
ilar results to the best ones of previous trial and error meth-
ods. Although it may be possible to find the better parame-
ters by empirical trial and error methods, it is not practical
because it is quite time consuming task. This paper is orga-
nized as follows. Section 2 describes the proposed adaptive
control method of strong mutation rate and probability. Ex-
perimental results and discussion are provided in section 3.
We conclude our paper in section 4.
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2. Adaptive Control of Strong Mutation Rate
and Probability

We first describe the background why adaptive control
is needed and next introduce the proposed GA with adap-
tive control of strong mutation rate and probability.

2.1 Background of Adaptive Control

In queen-bee GAs [16], we chose several values for the
strong mutation rate and probability and experimented with
those values. We could find from those experiments that
the proper strong mutation rate and probability were differ-
ent according to experimental functions. That is, the strong
mutation rate and probability should be set to small val-
ues for relatively simple uni-modal functions, while those
should be set to large values for complex multi-modal func-
tions in order to escape the local optimum areas. In [16],
chosen values for strong mutation rate and probability are
not changed during the whole evolution process. Since the
degree of convergence to local optimum areas is changed
according to generations, it is better that changing the
strong mutation rate and probability according to the de-
gree of convergence than the constant values.

Individuals in GAs are moved to the global or local op-
timum areas as the generation is progressed. Thus they are
converged to several areas after some generations. If one of
the converged areas is the global optimum area and if the
individuals converged to the global area are continuously
alive until one of the individuals approaches to the global
optimum, then the GA will easily find the global optimum.
Generally the converged areas, however, do not include the
global optimum areas or even if they include global op-
timum areas, the individuals in the global optimum area
are not alive until one of them reaches to the global opti-
mum. Therefore, it is quite difficult for some converged
individuals to local optimum areas to get out of the areas
and approach to the global optimum areas. This is the rea-
son why most optimization algorithms do not show good
performances especially for multi-modal complex function
optimization problems.

This problem called a premature convergence problem
is a major problem to overcome for fast optimization. A lot
of algorithms to solve this problem have been introduced
to date [2,4-9]. Most introduced methods strengthened
the exploration, i.e., increasing the mutation probability in
GAs. We devised the queen-bee evolution for the good con-
vergence to the global optimum and strong mutation for the
fast escaping of the local optimum areas [16]. Our queen-
bee GAs showed very good performances in some good
parameters of strong mutation rate and probability. How-
ever, there are no systematic methods to choose the good
values of the strong mutation rate and probability. In this
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paper, we devised an adaptive control method of the strong
mutation rate and probability.

We employed the measure of convergence for adaptive
control of the strong mutation rate and probability. First,
we used the average fitness for the measure of convergence.
If the average fitness of current generation is less than or
equal to that of previous generation, then we regard as a
converged state and increase the strong mutation rate and
probability. Otherwise, we decrease the strong mutation
rate and probability. As a second measure of convergence,
we took the failed ratio of evolution of individuals. That is,
a specific percent of whole offsprings are failed to evolve
from their parents, we also regard it as a converged state.
The enforcing of strong mutation rate and probability al-
lows the individuals to get out of the local optimum areas
and to approach to the global optimum areas. If some indi-
viduals are succeed to escape the local optimum areas, then
this makes the GAs escape a converged state and finally the
strong mutation rate and probability will be decreased for
stable evolution to the global optimum. From this adaptive
control of the strong mutation rate and probability, the in-
dividuals of our GA can easily get out of the local optimum
areas and can fast approach to the global optimum.

2.2 Proposed Genetic Algorithm

Algorithm 1 shows the proposed GA with adaptive con-
trol of the strong mutation rate and probability. Excepts for
the operation of “do control ¢ and p;n” marked by the as-
terisk, it is the same as the original queen-bee GA. The
detailed control method of strong mutation rate and proba-
bility is shown from the line 11 to line 18.

Algorithm 1 Genetic algorithm with adaptive control
method
/[t time//
/I n : population size //
/I P : populations //
/I € : strong mutation rate//
/I pm : normal mutation probability //
1 p;n : strong mutation probability //
// m(t) : measure of convergence at ¢ //
/I'S. : converged state //
/I m : control scale factor, where n >=1//
/I 1, : a queen-bee //
/I Iy, : selected bees //
t<0
initialize P(¢)
evaluate P(t)
while (not termination-condition)
do

te—t+1

select P(t) from P(t — 1)

P(t) = {(I,(t = 1), In(t — 1))}
recombine P(t)
do control £ and p;n (*)
calculate m.(t)

_ = 0 00 O LN kW=

—_ O
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12 if m.(t) = S

13 E=¢+06& where§ < 1

14 p;,l = p;n + ép;n, where p;n <1
15 else

16 & =¢&—6&/n, where £ > 0.5

17 p;n = p;n — 6p;n/n, where pin >0.05
18 end if

19 do crossover

20 do mutation

21 fori =1ton

22 ifi <(€xn)

23 do mutation with p,,

24 else

25 do mutation with p,,

26 end if

27 end for

28 evaluate P(t)

29 end

We first briefly address the queen-bee GA and then explain
the adaptive control method in detail.

Unlike the original GA, the parents of queen-bee GA
are composed of two types of individuals, i.e., the selected
parent I,,, and the queen-bee I,;, where queen-bee is the
best individual in the previous generation. Thus, every par-
ents have one selected individual and the best individual
as shown in the line 8 in Algorithm 1. This composition
of parents makes the GA follow to the queen-bee direc-
tion (in other words, this increases the exploitation). This
strong exploitation makes the GA not only fast evolve to
the global optimum, but also fast fall into local optimum
areas. In order to compensate this negative effect, we em-
ployed a strong mutation as shown in lines 21 ~ 26. That
is, a specific percent £ of individuals are strongly mutated
with strong mutation probability p;n. The strong mutation
rate £ and probability p;n are the major factors of the per-
formances of queen-bee GA. In [16], we chose some val-
ues for the strong mutation rate and probability and exper-
imented with those values.

In this paper, the strong mutation rate and probability
are dynamically controlled using the measure of conver-
gence as shown in the lines 11 ~ 18. We first calculate the
measure of convergence m..(t) and control the strong mu-
tation rate £ and strong mutation probability p;n. If the state
of current generation is a converged state, then the strong
mutation rate and probability are increased as £ = £ 4 0¢
and p;n = p;n + 6p;n. Otherwise, they are decreased as
£=¢—6¢/nand p,, = p,, — 6p,,/n, where 1 is a control
scale factor. As the control scale factor is increased, the
strong mutation effect will be large.

As described in previous section, we used two param-
eters for the measure of convergence. First is the average
fitness and second is the failed ratio of evolution. More
specifically, if the average fitness of current generation is
less than that of previous generation, we regard as the con-
verged state. Similarly, if a specific percent of offsprings
are failed to evolved from their parents, we also regard as

the converged state. Failed evolution means that the fitness
fo of an offspring o is less than or equal to the fitness of
parents f, = (f; + f;)/2, where f; and f; are the fitness
of parents.

3. Experimental Results

We experimented our algorithm with four function op-
timization problems. The four functions are given in Equa-

tion 1.
_ h ) mj; = 1 if Tj = Ij

fl - Zj:lm] { mj; = 0 lfTJ 75 Ij

fo =100(x2 — 22)% + (1 — 21)?,
where —2.048 < z; < 2.048

f — 05— sin(/\/a:erz%)sin(\/forx%)fO.S

3= (1.040.001 (22 +22))(1.040.001 (a2 +22)) ’

where —10 < z; < —10

fi= (@3 + 23)°Psin(50(a3 + 23)°1 +1)

Functions f; ~ fy are a bit pattern matching function,
Delong function 2, a Mexican hat function, and a Schafer
function 2, respectively. Fig. 1 shows the input-output re-
lations of four functions.

Function f; is a relatively simple, one dimensional bit
pattern matching problem. Function f5 has one global opti-
mum area and one relatively large local optimum area. As
a very complex multi-modal problem, function f3 called
a Mexican hat function is quite difficult to find the global
optimum located at (0,0) because it has too many local
optimum area around the global optimum. There are four
global optimum areas in Schafer function 2 at four corners.
Too many local optimum areas in the middle of the func-
tion prevent the individuals from approaching to the global
optimum.

We tested with typical parameters as shown in Table 1.
If one of the individuals finds the global optimum, then the
generation number at that time is recorded. We measured
the performances of all methods with an averaged value of
10 runs on the same parameter set. Table 2 showed one of
experimental results using the average fitness as a measure
of convergence and 7 = 8. For simplicity, we describe only
average values without standard deviation values. In the ta-
ble, QGA means original queen-bee GA and PGA denotes
the queen-bee GA with proposed adaptive control method.
As you can see in the table, the performances of original
queen-bee GA are greatly changed according to the param-
eters of ¢ and p;n. In proposed method, we don’t need to
choose the two parameters because they are adaptively con-
trolled by our proposed method. We marked the best result
of QGA with the asterisk (*). The performances of PGA
are similar to the best result of QGA. Note that our method
showed better results than the QGA in the most complex
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Fig. 1. Experimental functions (a) f1 (b) f2 (c) f3 (d) f4

Parameters

Values

Selection method

Crossover probability (p.)

Mutation probability (p,,)

Population size

Individual length

Strong mutation rate

Strong mutation probability

Control scale factor (1)

Increment of strong mutation rate (9€)
Increment of strong mutation probability (§p;n)
Initial strong mutation rate for adaptive control
Initial strong mutation probability for adaptive control

roulette wheel
0.6

0.05

10

24 bits
0,0.2,04,0.6
0.6,0.8,1.0
1,2,4,8
0.005

0.025

0

0.05
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Table 2. Experimental results of QGA and PGA

fi f2 /3 Ja
¢ p;n QGA | PGA QGA PGA QGA PGA QGA PGA
0 - (*)584 1840432.7 17779.8 29603.1
0.6 84.2 732.4 65066.5 26486.6
0.2 | 0.8 97.5 349.2 37867.0 37916.2
1.0 717.5 (*)298.0 (*)3767.3 18000.0
0.6 1115.3 | 475.1 1560.8 | 1774.5 355116.1 | 1454.8 175004.1 | 31216.7
04| 0.8 654.9 2354.5 295721.0 130466.9
1.0 351.0 962.6 4170.3 (*) 164724
0.6 | 40039.6 50147.8 1368656.2 197116.1
0.6 | 0.8 | 56686.6 24768.4 549066.7 226828.3
1.0 6933.1 10347.2 7701.1 38822.7
Table 3. Experimental results according to the control scale factor n
average fitness failed ratio
n i f2 /3 Ja fi fa /3 Ja
1| (*)51.6 | (*)640.9 8155.5 57067.1 1040.7 1032.3 3570.1 22558.9
2 1270.0 1498.6 2765.4 20250.3 819.6 1209.5 5839.4 | (*) 18094.6
4 611.3 1370.8 2047.7 | (*) 14711.2 951.7 1075.8 3525.7 21428.3
8 475.1 1774.5 | (¥)1454.8 31216.7 | (*) 661.8 | (*)839.5 | (*)2366.5 36429.4

and difficult function f3. This indicates that our method is
very useful and practical because we don’t need the empir-
ical selection of the parameters.

In order to show the performances according to the
n =1, 2, 4, 8, we experimented our method using the
two measure of convergence: average fitness and failed ra-
tio, respectively. Table 3 shows the performances of two
measures of convergence with four control scale factors,
n =1, 2, 4, 8. The performances of large 1 are generally
better than those of small 7, but it is not always. The perfor-
mances using average fitness as a measure of convergence
is better than those using the failed ratio at most functions.
However, the deviation of performances at average fitness
is larger than that at failed ratio. Note that as the 7 is get-
ting more larger, the performances of f3 is more and more
better at the average fitness.

As a final experiment, we measured the per-
formances according to the five parameter sets:
(8¢, 6p;n) = {(0.005, 0.025), (0.01, 0.05), (0.02, 0.1),
(0.04, 0.2), (0.08,0.4)} for average fitness and
re = {0.1, 0.3, 0.5, 0.7, 0.9} for the failed ratio of
evolution. Table 4 shows the experimental results. The
underlines of the numbers indicate the best results under
various parameters on a same control scale factor and the
asterisk of the numbers implies that the best results on
whole scale factors. As you can see, all best results are
located in the average fitness cases even if the difference of
best results between average fitness and failed ratio is not
so much. In the case of r. = 0.9, the most performances

are bad because it rarely occurs the 90 percents of individ-
uals are failed to evolve. This results in preventing from
increasing of strong mutation rate and probability. Finally,
the strong mutation rate and probability will be remained
very small values and this causes individuals not to get out
of the local optimum areas.

4. Conclusion

In this paper, we introduced an adaptive control method
of strong mutation rate and probability. This dynamic con-
trol of strong mutation rate and probability enables us not to
do the empirical selection through too many experiments.
In order to adaptively control the strong mutation rate and
probability, we introduced the measure of convergence us-
ing the average fitness and failed ratio. With this mea-
sure of convergence if the GA falls into a converged state,
then the strong mutation rate and probability are increased
by the predetermined amount and otherwise, they are de-
creased. This helps the individuals which fall into local
optimum areas get out of the areas and results in increasing
the performances of the GA. From extensive experiments
we could find that our method showed relatively similar re-
sults to the best one of empirical selection and sometimes
better than the empirical selection. This addresses that our
method is very effective and practical in that we can easily
apply the queen-bee GA to the practical problems without
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Table 4. Experimental results of various parameter sets

average fitness failed ratio

0| (9, 6p,) h f2 f3 f1 h f2 f3 fi_ | e

(0.005, 0.025) | (*)51.6 640.9 8155.5 57067.1 814.8 1232.5 | 4131.6 | 204573 | 0.1
(0.01, 0.05) 59.3 995.9 13194.6 34773.5 814.8 1266.4 | 5823.7 | 32987.1 | 0.3
1 (0.02,0.1) 199.8 666.4 21234.7 36183.9 || 1040.7 1032.3 | 3570.1 225589 | 0.5
(0.04,0.2) 153.7 323.7 32043.0 33657.1 63.4 6498.0 | 13922.7 | 35206.2 | 0.7
(0.08, 0.4) 68.9 | (¥)223.1 19524.0 35447.2 59.8 | 2073162.9 | 10034.2 | 40240.6 | 0.9
(0.005, 0.025) | 1270.0 1498.6 27654 20250.3 814.8 1232.5 | 4131.6 | 204573 | 0.1
(0.01, 0.05) 1239.6 2109.2 4904.3 12452.7 814.8 1266.4 | 2781.8 169352 | 0.3
2 (0.02,0.1) 811.7 1322.9 4214.0 19608.8 819.6 1209.5 | 5839.4 | 18094.6 | 0.5
(0.04,0.2) 991.8 1870.4 13220.4 25402.8 795.3 1602.8 | 3484.1 | 229103 | 0.7
(0.08, 0.4) 384.1 2125.5 43269.8 25527.9 59.8 | 1955973.6 | 7792.9 | 104099.4 | 0.9
(0.005, 0.025) 611.3 1370.8 2047.7 14711.2 814.8 1232.5 | 4131.6 | 204573 | 0.1
(0.01, 0.05) 1076.1 1105.1 2863.2 12854.1 814.8 12442 | 30554 | 25307.2 | 0.3
4 (0.02,0.1) 1305.1 2808.3 4136.7 21946.4 951.7 1075.8 | 3525.7 | 214283 | 0.5
(0.04,0.2) 1286.6 2739.9 3919.3 25129.6 405.5 2040.5 1455.5 | 25240.3 | 0.7
(0.08, 0.4) 1199.7 1848.4 14753.6 36254.0 56.3 | 2452459.9 | 13974.4 | 60047.3 | 0.9
(0.005, 0.025) 475.1 1774.5 | (*)1454.8 31216.7 814.8 1232.5 | 4131.6 | 204573 | 0.1
(0.01, 0.05) 548.5 1486.7 3602.2 | (*)9960.4 814.8 1232.5 | 4236.8 15524.7 | 0.3
8 (0.02,0.1) 718.0 1386.5 22227 25215.2 661.8 839.5 | 2366.5 | 36429.4 | 0.5
(0.04,0.2) 837.9 1213.1 3993.9 23641.6 407.2 1669.6 | 50354 | 21198.4 | 0.7
(0.08, 0.4) 995.8 2880.8 3769.3 21538.1 56.3 | 2172136.9 | 15899.0 | 86514.5 | 0.9
worrying about the parameter selection from many trial and [6] E. Alba and B. Dorronsoro, “The explo-
error experiments. ration/exploitation tradeoff in dynamic cellular
genetic algorithms,” IEEE Transactions on Evo-
lutionary Computation, vol. 9, pp. 126-142, Apr.
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